针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
加权负关联规则挖掘
相关推荐
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
3
2024-05-31
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
2
2024-05-19
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
2
2024-05-25
SPSS-Clementine应用宝典-负关联规则挖掘算法的数据分析
在数据挖掘中,负关联规则挖掘算法主要探索形如A→┐B、┐A→B、┐A→┐B的蕴含关系,其中项集A的存在抑制了项集B的出现。这种挖掘方法突出了负相关的数据模式分析。
数据挖掘
0
2024-09-14
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
7
2024-04-30
近似负关联规则算法数据挖掘原理与SPSS-Clementine应用详解
10.2“近似”负关联规则算法定理1设,则有① ② ③ ④其中:为支持度函数。定理1描述的是三种不同形式的负关联规则支持度的计算方法。
数据挖掘
2
2024-07-15
关联规则挖掘——Sequential Patterns
关联规则挖掘和顺序模式挖掘,欢迎深入了解!
数据挖掘
3
2024-05-13
关联规则挖掘示例解析
以关联规则 A C 为例,深入解读其支持度和置信度:
支持度 (Support): 衡量规则 A C 在所有交易中出现的频率。
计算公式:support(A C) = support({A, C}) = 50%
解读:意味着在所有交易中,同时包含 A 和 C 的交易占 50%。
置信度 (Confidence): 衡量在包含 A 的交易中,也包含 C 的交易的比例。
计算公式:confidence(A C) = support({A, C}) / support({A}) = 66.6%
解读:意味着在所有包含 A 的交易中,有 66.6% 的交易也包含 C。
Apriori 算法原理:
Apriori 算法基于一个关键思想:如果一个项集是频繁的,那么它的所有子集也一定是频繁的。
示例应用:
最小支持度: 50%
最小置信度: 50%
算法与数据结构
3
2024-05-23
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
2
2024-05-25