10.2“近似”负关联规则算法定理1设,则有① ② ③ ④其中:为支持度函数。定理1描述的是三种不同形式的负关联规则支持度的计算方法。
近似负关联规则算法数据挖掘原理与SPSS-Clementine应用详解
相关推荐
SPSS-Clementine应用宝典-负关联规则挖掘算法的数据分析
在数据挖掘中,负关联规则挖掘算法主要探索形如A→┐B、┐A→B、┐A→┐B的蕴含关系,其中项集A的存在抑制了项集B的出现。这种挖掘方法突出了负相关的数据模式分析。
数据挖掘
0
2024-09-14
多维关联规则挖掘数据挖掘原理及SPSS-Clementine应用详解
多维关联规则挖掘是根据是否允许同一个维度重复出现,可分为维间的关联规则(不允许同一维度重复出现)和混合维关联规则(允许维度在规则的左右同时出现)。
数据挖掘
1
2024-07-18
数据挖掘原理与SPSS-Clementine应用宝典详解
17.5计算标准t17.5.1交叉验证标准t交叉验证的概念是将样本分成两个子集:一个包含n-m个样本的训练样本集,另一个包含m个样本的验证样本集。第一个样本集用于建模,第二个样本集用于评估预期偏差或估算距离。例如,在具有定量输入的神经网络中,通常使用高斯偏差:(17-30)
数据挖掘
2
2024-07-17
数据挖掘原理与SPSS-Clementine应用宝典详解
C5.0节点成本页签C5.0节点对话框用于显示错误归类损失矩阵,指定不同类型预测错误之间的相对重要性。图21-20展示了错误归类损失的成本对比。损失矩阵显示每一可能预测类和实际类组合的损失情况,允许用户自定义损失值以及改变预测类与实际类组合的损失值。
数据挖掘
0
2024-09-01
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
3
2024-07-15
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
3
2024-07-16
数据挖掘原理与SPSS-Clementine应用宝典
用户可以从数据流的任何非终端节点中生成用户输入节点。具体步骤包括:(1)确定在流程的哪一点输入节点;(2)右键单击节点并选择“生成用户输入节点(P)”,将节点数据导入用户输入节点;(3)用户输入节点负载了流程下游的所有过程,代替原有节点。生成后,节点从原数据中继承了所有数据结构和字段类型信息(如果可以继承)。
数据挖掘
2
2024-07-18
数据挖掘原理与SPSS-Clementine应用指南
19.2.4统计汇总图19-21展示了一个汇总节点的实例。汇总节点能够将一系列输入记录转换为综合且总结性的输出记录,具体的汇总对话框如图19-21所示。
数据挖掘
0
2024-08-10
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
0
2024-10-12