Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
关联规则挖掘综述
数据挖掘
9
PDF
910.8KB
2024-05-19
#数据挖掘
#关联规则
#数据分析
#知识发现
#大数据
关联规则挖掘
该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
相关推荐
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
3
2024-05-31
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如: 牛奶 → 面包 [20%, 60%] 酸奶 → 黄面包 [6%, 50%]
数据挖掘
2
2024-05-25
研究论文基于MapReduce的并行关联规则挖掘算法综述
随着数据量的激增,传统算法已无法满足大数据挖掘需求,需要采用分布式并行的关联规则挖掘算法。MapReduce作为一种流行的分布式计算模型,因其简单易用、可扩展性强、自动负载平衡和容错性等优势,得到了广泛应用。对现有基于MapReduce的并行关联规则挖掘算法进行分类和综述,分析其优缺点及适用范围,并展望未来研究方向。
数据挖掘
2
2024-07-16
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
7
2024-04-30
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
DB2
5
2024-04-30
关联规则挖掘——Sequential Patterns
关联规则挖掘和顺序模式挖掘,欢迎深入了解!
数据挖掘
3
2024-05-13
关联规则挖掘示例解析
以关联规则 A C 为例,深入解读其支持度和置信度: 支持度 (Support): 衡量规则 A C 在所有交易中出现的频率。 计算公式:support(A C) = support({A, C}) = 50% 解读:意味着在所有交易中,同时包含 A 和 C 的交易占 50%。 置信度 (Confidence): 衡量在包含 A 的交易中,也包含 C 的交易的比例。 计算公式:confidence(A C) = support({A, C}) / support({A}) = 66.6% 解读:意味着在所有包含 A 的交易中,有 66.6% 的交易也包含 C。 Apriori 算法原理: Apriori 算法基于一个关键思想:如果一个项集是频繁的,那么它的所有子集也一定是频繁的。 示例应用: 最小支持度: 50% 最小置信度: 50%
算法与数据结构
3
2024-05-23
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。 Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
2
2024-05-25
关联规则挖掘步骤解析
关联规则挖掘分为两个步骤:第一步,找出所有频繁项集,这些项集的频繁性至少和预定义的最小支持计数一致。第二步,由频繁项集生成强关联规则,这些规则必须满足最小支持度和最小置信度。
数据挖掘
2
2024-07-12