非负矩阵分解方向的文章具有一定参考价值,推荐有兴趣的读者阅读学习。
非负矩阵分解算法价值探讨
相关推荐
Matlab非负矩阵分解NMF-NMF演示文稿
Matlab非负矩阵分解NMF-NMF演示文稿包括非负矩阵分解的讲义和相关程序截图。
Matlab
9
2024-09-26
高光谱解混的非负矩阵分解Matlab程序
该Matlab程序利用非负矩阵分解技术,对高光谱数据进行解混操作,适用于图形图像处理领域。
Matlab
22
2024-05-25
Matlab代码示例共生矩阵的非负张量因式分解
这是一个用Matlab实现的代码示例,用于通过非负张量因式分解区分表型和独特表型。该代码需要使用Tensor工具箱2.6版,并处理count.csv和label.csv数据格式,其中包括每个受试者的诊断和处方并发计数,以及临床结局的受试者ID。此外,还涉及诊断和处方的成对相似性矩阵similarities.csv。
Matlab
18
2024-07-30
非奇异矩阵上-海森堡矩阵分解Matlab代码
这段Matlab代码用于对非奇异矩阵进行上-海森堡矩阵分解,虽然计算量较大约为n^3级别,但仍能完成分解任务。
Matlab
12
2024-08-19
非负张量分解保持多维数据结构的先进方法
在现实生活中,存在大量多维数据,如视频流数据、文本数据和RGB图像等。传统方法通常将多维数据重构为矩阵,利用PCA、SVD、NMF等矩阵分析方法进行特征提取、聚类和分类,然而,这样的重构会破坏数据的空间结构,降低分析结果的准确性。张量作为多维数组,是向量和矩阵在高维上的推广,能够在分析中保持数据的原始结构,因而备受学者关注,被广泛应用于计算机视觉、数据挖掘、信号处理等领域。重点研究三阶非负张量分解问题,回顾了三阶张量非负分解模型(NTVl)的思想及实现过程,并提出了基于张量投影的非负分解模型(NTPM),提供了相应的算法公式。在收敛性分析中,给出并证明了KKT条件的等价形式和算法收敛性定理。实
算法与数据结构
15
2024-10-25
可转债价值非参数估计2007
非参数估计的可转债,嗯,这个资源挺有料的。文章是 2007 年的,虽然不新,但讲得还挺实在。用了核密度估计这招,专门可转债的价值——比如像华菱转债这种带转股条款的,估值起来真不容易。作者不是靠传统金融模型那一套,而是走了统计这条路,看得出来还挺注重实证。你要是做前端的,刚好对金融数据可视化感兴趣,这篇值得一看,数据+方法一应俱全。
统计分析
0
2025-06-15
matlab矩阵分解算法在IPTV推荐系统中的应用
数字电视服务提供了大量电视频道,涵盖多样内容以满足不同用户的需求。在用户不确定观看偏好时,推荐系统的个性化推荐尤为重要。本研究探讨了两种协同过滤推荐算法——加权斜率一和矩阵分解在IPTV推荐中的应用。实验结果显示,矩阵分解算法在真实数据集上表现优异,适合在大规模环境中构建高效推荐系统。
Matlab
19
2024-08-01
使用LU分解的矩阵逆MATLAB示例代码与算法实现
LU 分解的矩阵逆代码写得挺清楚的,适合刚接触数值线性代数或者需要快速复现算法的朋友。用 MATLAB 做开发的话,这套示例代码还蛮实用,前向替换、后向替换、部分旋转这些步骤都没落下。代码结构也比较规整,逻辑清晰,基本照着抄就能跑通。不用自己去重写底层逻辑,响应也快,适合放进工程里临时用一用或者作为教学参考。如果你正在做矩阵求逆相关的,建议看看这套。
Matlab
0
2025-06-17
MF_Kacmarz.zip 使用Kacmarz算法进行矩阵分解 - Matlab开发
这个文件展示了使用Kacmarz算法的两种变体(随机Kacmarz和块Kacmarz)来从矩阵的部分观测值恢复完整矩阵的过程。我们通过最小化问题 ||Y - UV||_F 来解决矩阵分解的挑战,其中 UV 表示矩阵分解的结果。Kacmarz算法的应用显著减少了计算复杂性,提高了准确性,因为它在每次迭代时使用简单的正交投影。
Matlab
8
2024-07-22