非负矩阵分解方向的文章具有一定参考价值,推荐有兴趣的读者阅读学习。
非负矩阵分解算法价值探讨
相关推荐
Matlab非负矩阵分解NMF-NMF演示文稿
Matlab非负矩阵分解NMF-NMF演示文稿包括非负矩阵分解的讲义和相关程序截图。
Matlab
0
2024-09-26
高光谱解混的非负矩阵分解Matlab程序
该Matlab程序利用非负矩阵分解技术,对高光谱数据进行解混操作,适用于图形图像处理领域。
Matlab
4
2024-05-25
Matlab代码示例共生矩阵的非负张量因式分解
这是一个用Matlab实现的代码示例,用于通过非负张量因式分解区分表型和独特表型。该代码需要使用Tensor工具箱2.6版,并处理count.csv和label.csv数据格式,其中包括每个受试者的诊断和处方并发计数,以及临床结局的受试者ID。此外,还涉及诊断和处方的成对相似性矩阵similarities.csv。
Matlab
3
2024-07-30
非奇异矩阵上-海森堡矩阵分解Matlab代码
这段Matlab代码用于对非奇异矩阵进行上-海森堡矩阵分解,虽然计算量较大约为n^3级别,但仍能完成分解任务。
Matlab
0
2024-08-19
非负张量分解保持多维数据结构的先进方法
在现实生活中,存在大量多维数据,如视频流数据、文本数据和RGB图像等。传统方法通常将多维数据重构为矩阵,利用PCA、SVD、NMF等矩阵分析方法进行特征提取、聚类和分类,然而,这样的重构会破坏数据的空间结构,降低分析结果的准确性。张量作为多维数组,是向量和矩阵在高维上的推广,能够在分析中保持数据的原始结构,因而备受学者关注,被广泛应用于计算机视觉、数据挖掘、信号处理等领域。重点研究三阶非负张量分解问题,回顾了三阶张量非负分解模型(NTVl)的思想及实现过程,并提出了基于张量投影的非负分解模型(NTPM),提供了相应的算法公式。在收敛性分析中,给出并证明了KKT条件的等价形式和算法收敛性定理。实验结果显示,NTPM模型在运行时间和逼近误差方面优于传统的非负分解模型。最后,讨论了NTPM模型的未来研究方向。
算法与数据结构
0
2024-10-25
matlab矩阵分解算法在IPTV推荐系统中的应用
数字电视服务提供了大量电视频道,涵盖多样内容以满足不同用户的需求。在用户不确定观看偏好时,推荐系统的个性化推荐尤为重要。本研究探讨了两种协同过滤推荐算法——加权斜率一和矩阵分解在IPTV推荐中的应用。实验结果显示,矩阵分解算法在真实数据集上表现优异,适合在大规模环境中构建高效推荐系统。
Matlab
3
2024-08-01
MF_Kacmarz.zip 使用Kacmarz算法进行矩阵分解 - Matlab开发
这个文件展示了使用Kacmarz算法的两种变体(随机Kacmarz和块Kacmarz)来从矩阵的部分观测值恢复完整矩阵的过程。我们通过最小化问题 ||Y - UV||_F 来解决矩阵分解的挑战,其中 UV 表示矩阵分解的结果。Kacmarz算法的应用显著减少了计算复杂性,提高了准确性,因为它在每次迭代时使用简单的正交投影。
Matlab
1
2024-07-22
基于非负最小二乘法求解线性方程
非负最小二乘法 (NNLS) 是一种用于求解线性方程组的数值方法,尤其适用于解向量需满足非负约束的情况。
给定线性方程组 A * x = b,NNLS 寻找向量 x,在满足 x 的所有元素非负 (x >= 0) 的前提下,最小化残差平方和 ||A * x - b||^2。
相比于传统的最小二乘法,NNLS 引入非负约束,能够在信号处理、图像分析等领域提供更具物理意义和可解释性的解。
Matlab
2
2024-05-30
固定QB分解的精确低秩矩阵逼近 - SVD算法Matlab代码
本软件包提供了用于精确低秩矩阵逼近的Matlab代码,涵盖了randQB_auto算法的实现。该算法有效计算固定QB分解,包括randQB_EI和randQB_FP的固定精度版本。此外,还包含了用于实验和测试的测试用例和脚本,特别是适用于固定精度低秩矩阵逼近的自适应随机测距仪算法AdpRangeFinder。详细的算法说明请参考Yu Wenjian,Yu Gu和Li Yaohang Li的研究成果。
Matlab
2
2024-08-01