非线性函数拟合
当前话题为您枚举了最新的 非线性函数拟合。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
BP神经网络非线性系统建模-非线性函数拟合
本资料可用于参考和学习。
算法与数据结构
4
2024-05-13
使用遗传算法优化BP神经网络实现非线性函数拟合
Matlab GUI设计中,使用遗传算法优化BP神经网络,以实现对非线性函数的精确拟合。
Matlab
0
2024-08-23
根据图示推测曲线的MATLAB非线性拟合PPT
根据图示,我们推断曲线的特征如下:现在利用最小二乘法确定最佳参数:b1, b2, b3。初始参数值为b0=[43, 0.6, 0.1]。定义函数为fun=inline('b(1)(1-b(2)exp(-b(3)*k))','b','k')。使用nlinfit函数进行拟合,得到最佳参数b=[42.6643, 0.5483, 0.0099],误差平方和R=sum(r.^2)。因此,拟合曲线如图6.3所示。
Matlab
2
2024-07-27
非线性最小二乘问题的指数拟合方法
exp2fit方法精确解决非线性最小二乘问题,适用于特定的指数函数形式:在有噪声数据下,通过选择不同的拟合模型(如单指数或双指数)来优化参数。例如,可以使用 f=s1+s2exp(-t/s3) 或 f=s1+s2exp(-t/s3)+s4*exp(-t/s5),具体选择由caseval参数决定。
Matlab
3
2024-07-19
解决非线性最小二乘法拟合难题
matlab中的非线性最小二乘法拟合问题可以通过以下matlab代码来深入学习。
Matlab
2
2024-07-25
实现非线性拟合的关键步骤及MATLAB应用
为了实现非线性拟合,首先需定义在线函数。步骤如下:(1)创建M文件;(2)使用inline函数定义拟合表达式,例如:fun=inline('b(1)(1-b(2)exp(-b(3)*x))','b','x'),其中b为参数向量;(3)计算在x=0:0.1:1范围内的函数值时,确保矩阵操作正确。这些操作将有助于精确拟合数据曲线。
Matlab
0
2024-08-05
粒子群算法求解非线性函数极值
这份资料提供了一种基于粒子群算法的非线性函数极值寻优方法,可以通过模拟粒子群体的行为来搜索问题的最优解。
算法与数据结构
2
2024-05-27
非线性参数下的样本熵函数
这是一个Matlab代码示例,展示了样本熵函数的非线性参数形式。通过对函数参数进行赋值,可以灵活调用并计算样本熵。
算法与数据结构
0
2024-08-24
使用Fminspleas进行FMI高效非线性回归拟合-MATLAB开发
感谢Duane Hanselman提出的这一想法。 Fminspleas是一个简单的非线性最小二乘工具,适用于形如Y = a1f1(X,C) + a2f2(X,C) + ... + an*fn(X,C)的回归模型。X可以是任意数组,因此适用于多维问题,而C则是固有非线性参数的集合。f1、f2等函数必须返回与Y相同长度的列向量结果。由于优化只需处理非线性参数,因此函数评估较少。举例来说,仅需32次函数评估即可估计2个线性参数和1个非线性参数,相比直接调用fminsearch的超过300次评估要少得多。目前,Fminspleas仅允许用户指定非线性参数的边界约束,但如有需要,可以考虑添加线性参数约束。此外,Fminspleas还允许用户为回归提供一组非负权重。
Matlab
0
2024-08-10
MATLAB神经网络案例BP神经网络非线性系统建模与函数拟合
随着技术的不断发展,MATLAB神经网络在处理非线性系统建模和函数拟合方面展示出了强大的应用潜力。
Matlab
0
2024-08-29