灰关联挖掘

当前话题为您枚举了最新的灰关联挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于灰关联挖掘的铝电解控制算法
文章提出一种适用于铝电解工业控制的灰关联度挖掘框架,并设计了Gray-CT L挖掘算法。该算法将计算灰关联度和挖掘灰关联规则分为两个独立部分,通过对电解槽生产数据进行分析,获得了影响温度的因素。
基于灰关联规则的回转窑火焰图像检索方案 (2008)
将数据挖掘中的灰关联分析 引入 基于内容的图像检索 中,提出一种基于灰关联度的回转窑火焰图像的检索方法。通过分析火焰图像特征值,并结合生产运行数据挖掘得到关联规则;应用灰关联度作为加权因子计算被检索图像与数据库中图像的相似度,从而得到一系列相近检索结果;根据用户的相关反馈,查询得到更优结果;设计和实现了检索系统的原型机,并应用从某氧化铝厂采集的图像和生产数据进行图像检索实验。实验结果表明:该方法能够较快而有效地从图像数据库中检索得到较满意的结果。**
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如: 牛奶 → 面包 [20%, 60%] 酸奶 → 黄面包 [6%, 50%]
关联规则挖掘路线图-数据挖掘概念、技术--关联1
关联规则挖掘包括布尔与定量关联(基于数据类型处理)。例如:buys(x, “SQLServer”) ^ buys(x, “DMBook”) -> buys(x, “DBMiner”) [0.2%, 60%]。此外,还有单维与多维关联,单层与多层分析。例如:age(x, “30..39”) ^ income(x, “42..48K”) -> buys(x, “PC”) [1%, 75%]。进一步的扩展涉及相关性和因果分析。需要注意的是,关联并不一定意味着因果关系。还有最大模式和闭合相集的概念,以及如“小东西”销售促发“大家伙”买卖的添加约束。
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
关联规则挖掘——Sequential Patterns
关联规则挖掘和顺序模式挖掘,欢迎深入了解!
关联知识与数据挖掘
数据库中蕴藏着丰富的关联知识,等待被挖掘和利用。关联是指两个或多个变量取值之间存在的规律性联系。 关联知识的形式多种多样,包括: 简单关联规则 多层关联规则 多维关联规则 量化关联规则 基于约束的关联规则 例如,购物篮分析可以发现不同商品之间的关联规则,揭示顾客的购买习惯。 Apriori算法和频繁模式树(FP-树)是两种常用的关联规则挖掘算法。