视觉神经科学

当前话题为您枚举了最新的 视觉神经科学。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab中使用VisualStimulusToolbox进行视觉神经科学研究及及格率计算
Matlab中求及格率代码 VisualStimulusToolbox 1.0.1 是一个轻量级的MATLAB工具箱,专为视觉和神经科学研究而设计,支持生成、存储和绘制各种2D视觉刺激。常见的刺激类型包括:正弦光栅、格子、随机点场和噪声等。 工具箱功能 视觉刺激创建:用户可以轻松创建和操纵视觉刺激,如正弦光栅、漂移格子、漂移棒、随机点云及其组合。 刺激绘制和存储:支持将每个视觉刺激绘制在图形界面上,记录到AVI格式,或存储为二进制文件。 尖峰序列转换:VisualStimulusToolbox生成的.dat文件可以轻松转换为尖峰序列,用于CARLsim模拟的输入。 使用案例 VisualStimulusToolbox原本为尖峰网络模拟器提供了一种简单的视觉刺激生成方法。自CARLsim 3.0版本起,用户可以直接将生成的文件转换为尖峰序列。 引用:如您出于科研目的使用该工具箱,请引用 Beyeler,M. 的“视觉刺激工具箱:v1.0.0”(Zenodo,2016年6月22日,doi:10.5281 / zenodo.154061)作为参考文献。 此外,该工具箱是一个轻量级替代方案,可独立使用,适合于不需要全功能库的科研场景。
神经科学数据分析工具(Matlab)
Matlab迎风格式代码
Siegert神经元的作用及其在神经科学中的应用
如果y=siegert(x,w,param),一个带有泊松过程输入的积分和激发神经元,在长时间内平均,其输出激发速率将与输入激发速率相匹配: rate_out=siegert(rate_in,w,param)。siegert神经元不仅提供了时间步模型与事件驱动模型之间的桥梁,还在神经科学中扮演重要角色。
Matlab代码使用欧拉公式计算圆周率 - GVNN的几何视觉神经网络
Matlab代码:欧拉公式用于计算圆周率的具体实现。GVNN(几何视觉神经网络)是一个专注于深度几何研究的库,于ECCV深度几何研讨会2016年被讨论。它主要通过自我监督学习来利用低视差。灵感来源于2015年在NIPS上发布的Spatial Transformer Networks(STN)论文,并提供了开放源代码。除了STN的2D转换外,GVNN还包括适用于3D几何计算机视觉的新转换集。这些扩展包括3D对应物和不同的M估计量,以及SE3和Sim3层的相机针Kong投影和网格生成器。此外,GVNN还支持SO3和欧拉角的旋转表示,以及SE(2)的斜面视差处理。
基于Matlab的表情识别代码亚特兰大神经科学开源分析会议教程回顾
本教程详细介绍了如何利用开源软件分析数据,重点关注于神经科学领域。研讨会于2017年4月8日星期六举办,涵盖了多个主题,包括使用ggplot2在R中进行绘图,使用GANDLF的生成对抗神经网络进行钙成像,以及在Jupyter Notebook中使用Matlab进行数据分析和可视化。
用于神经科学研究的Matlab回归分析t统计量计算脚本和函数集合
GC_clean是GNU Octave(兼容Matlab)的脚本和函数集合,专为计算和研究Granger因果关系(GC)而开发。这些代码能够在普通PC上快速计算多达一千个变量的条件GC,对于已知相关性的情况下仅需10分钟。代码包括时域和频域GC的计算方法,还提供统计检验(如p值和置信区间),尽管主要用于研究目的。请注意,代码的正确性是首要考虑,尽管在违反GC基本假设的输入情况下,鲁棒性可能会受到影响。详细功能概述可以查阅相关文献。
Matlab编程技巧Psychopy_ext框架用于行为神经科学和心理学实验的设计、分析和绘图
如果您想深入了解如何使用该软件包,请参阅详细说明。Psychopy_ext是一种灵活的框架,专为快速设计、分析和绘制神经科学和心理学实验而设计,与PsychoPy、PyMVPA或matplotlib不同,它通过选择合理的默认值并提供常见任务模板,简化了实验的构建和分析。此外,它支持自动运行实验、提供GUI和命令行解释器,满足定制需求,使得实验设计更加简便。
视觉盛宴
沉浸式的视觉体验,带您领略精彩瞬间。
视觉中国:MongoDB助力海量视觉内容管理
深入探索视觉中国如何利用MongoDB高效管理海量视觉素材,实现灵活扩展和高效检索。
MATLAB机器视觉工具箱视觉控制和图像处理利器
Machine Vision Toolbox(MVTB)适用于MATLAB版本4,提供了广泛的机器视觉和基于视觉的控制功能。该工具箱包含超过100个功能,涵盖图像文件的读写、采集、显示、过滤、斑点检测、特征提取等操作。通过网络摄像头输入,可以在MATLAB中实现视觉伺服系统。MATLAB的矩阵操作使得处理图像的数学形态学、单应性、视觉雅可比、相机校准和色彩空间转换变得简单直观。