Python Scripting

当前话题为您枚举了最新的 Python Scripting。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Differential Scheme for Solving Problem 7A Dynamic Scripting Approach in Java-based Groovy Programming(2nd Edition)
The following differential schemes are used to solve the given problem: First Scheme: Combining equations (18), (21), and (22), we derive a differential scheme for solving problem (7). The general form is given as follows:[u^{n+1} = u^n + \Delta t \left( -\left( \frac{d^2 u}{dx^2} \right)^n \right)]In this case, the value of ( u_0 ) at layer ( j=0 ) is known. Using the above scheme, we can compute approximate values for nodes in the first layer ( j=1 ), then continue calculating successively for each layer. Classical Implicit Scheme: Rearranging equation (19) and combining with equations (21) and (22), we arrive at the following implicit differential scheme:[u^{n+1} = u^n + \Delta t \left( -\left( \frac{d^2 u}{dx^2} \right)^n + f(x, t) \right)]In this implicit scheme, though ( u_0 ) at the 0th layer is known, the calculation of values for subsequent layers ( j \geq 1 ) cannot be done directly. Hence, this scheme is termed the classical implicit format. Dufort-Frankel Scheme: The Dufort-Frankel scheme is a three-layer explicit scheme derived by combining equations (24), (25), and (26). Its specific form is:[u^{n+1} = u^n + \Delta t \left( \frac{1}{2} \left( \frac{d^2 u}{dx^2} \right)^n \right)]In this scheme, the value ( u_0 ) at the 0th layer is determined by the initial condition, and then values for subsequent layers are computed iteratively, starting from the 1st layer using a two-layer format. Hyperbolic Equation and Differential Solutions: For the second-order wave equation:[\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial^2 u}{\partial t^2}]we define:[v = \frac{\partial u}{\partial x}, \quad \frac{\partial v}{\partial t} = \frac{\partial u}{\partial t}]This transforms the equation into a first-order linear system of hyperbolic equations."
马氏链模型-learning.groovy.3.java-based.dynamic.scripting.2nd.edition (英文版pdf)
第十七章马氏链模型,随机过程的概念是描述随机现象变化过程的概率规律性。随机过程理论研究随机变量随时间变化的规律,马尔可夫链是一类特殊的随机序列,参数集合T可以看作时间。本章介绍了马尔可夫链的定义及其在实际系统中的应用。
Python-Arango:ArangoDB的Python驱动
Python-Arango,一个适用于ArangoDB的Python驱动,提供便捷的交互方式。
MySQL-python 1.2.5 (64 位,Python 2.7)
MySQL-python 1.2.5 版本,适用于 64 位 Windows 系统和 Python 2.7 环境,经过测试验证可用。
动态脚本编写的学习与假设分析 - 学习.groovy.3.java-based.dynamic.scripting.2nd.edition (PDF下载)
如何确定设备的最佳保养费用和转售时机,以实现最大经济效益?设备转售价是时间t的函数,初始转售价为x0。随着时间推移,设备磨损加剧,磨损程度由磨损函数tm描述。定期保养可以减缓设备磨损速度,提升转售价,保养效益系数tg影响保养的实际效果。保养费用应根据单位时间产值p和保养效益系数tg选取适当数值,以确保经济效益最大化。
MySQL Python 1.2.5 Windows版 Python 2.7安装程序
MySQL Python 1.2.5 Windows版 Python 2.7安装程序已经发布。此版本支持在Windows操作系统上安装并使用MySQL数据库。用户可以通过该安装程序方便地在其Python 2.7环境中集成MySQL数据库功能。
MongoDB 与 Python
英文原版书籍,详细指导如何在 Python 环境下使用 MongoDB
Python爬虫秘籍
掌握数据抓取技能,轻松成为数据侠盗! 这份Python爬虫源码汇集,助你突破技术壁垒,轻松获取所需数据。它不仅能为你带来实用的商业价值,也能满足你的好奇心。 无论是分析竞争对手数据、收集行业情报,还是窥探社交动态,这些源码都能为你提供支持。赶紧入手,开启你的数据探索之旅吧!
Python Steam 爬虫
使用 Python 爬取 Steam 网站上的信息,轻松获取数据!该爬虫源码简单易用,让你轻松成为数据收集高手。无论是竞争对手数据、行业情报,还是个人社交媒体动态,它都能满足你的需求。快来打破技术壁垒,开启数据探索之旅吧!
Python 批量替换
Python小程序可协助批量替换文件夹中指定字符,如移除文档中的括号。