力矩衰减
当前话题为您枚举了最新的 力矩衰减。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于人工智能的复杂工况螺纹连接力矩衰减预测新方法
针对冲击、振动或变载荷环境等复杂工况下螺纹连接易失效的问题,传统的实验和仿真方法效率不高且成本较高。本研究利用人工智能技术在故障预测领域的优势,提出了一种基于数据挖掘的新型复杂工况螺纹连接力矩衰减预测方法。该方法通过挖掘原始数据中螺纹连接故障的精确映射关系,准确识别导致螺纹连接失效的主要原因,并预测力矩衰减情况。首先,采用规则化故障量化方法考虑文本极性变化特征;其次,结合专业领域词典对螺纹连接力矩衰减进行基于文本描述的故障评级;进而,提出基于Logistic函数模型的特征构建方法并建立相关特征集;最后,利用随机森林和岭回归算法的Stacking集成学习预测模型。本研究以重型卡车推力杆螺纹力矩衰减预测作为案例,验证了该新方法的可行性和有效性,集成模型预测准确率较单一算法模型平均提升了53.39%。
数据挖掘
0
2024-08-22
锂离子电池容量衰减仿真研究
针对电动汽车,开展了锂离子电池容量衰减仿真研究。
算法与数据结构
3
2024-05-15
matlab实现小波变换中的信号抑制与衰减
在matlab中实现信号抑制与衰减是通过小波变换中的消失矩实现的。如果某小波函数的平均值为0,则该小波具有n+1个消失矩,可用于抑制n次多项式信号。
Matlab
0
2024-09-25
从自由衰减的响应中探索阻尼特性Matlab开发详解
随着技术的进步,研究人员越来越多地开始关注如何从自由衰减的响应中准确识别阻尼的属性。
Matlab
2
2024-07-26
基于滑动时间衰减窗口的网络流频繁项集挖掘算法
网络流数据频繁项集挖掘是进行网络流量分析的基础。STFWFI 算法采用基于字典顺序前缀树 LOP-Tree 的方法进行频繁项集挖掘,并引入了更符合网络流特性的滑动时间衰减窗口模型,从而有效降低了时间和空间复杂度。此外,该算法还提出了一种基于统计分布的节点权值计算方法 SDNW,替代了传统的统计方法,提高了网络流节点估值的精确度。实验结果表明,STFWFI 算法在网络流频繁项集挖掘中表现出良好的性能。
数据挖掘
4
2024-05-20
基于时间衰减和密度的数据流聚类方法探索
数据挖掘中的一个关键分支是数据流聚类技术,其中CluTA算法建立在K均值算法基础之上,考虑了时间衰减和相似簇的合并,以满足用户对时间要求,实现任意形状的簇聚类。理论分析和实验结果均验证了该算法的可行性。
数据挖掘
1
2024-08-02
解决过度拟合问题的方法Matlab人工神经网络中的权值衰减
过度拟合解决方法:权值衰减。它在每次迭代过程中以某个小因子降低每个权值,这等效于修改E的定义,加入一个与网络权值的总量相应的惩罚项。此方法的动机是保持权值较小,从而使学习过程向着复杂决策面的反方向偏置。验证数据是最成功的方法之一,在训练数据外再为算法提供一套验证数据,并使用在验证集合上产生最小误差的迭代次数。虽然这不是总能明显地确定验证集合何时达到最小误差,但它通常能有效减少过度拟合问题。
Matlab
0
2024-11-06
matlab模型生成代码调试-pynga下一代衰减地面运动预测方程(2008)
使用Matlab编写模型生成代码并进行调试。
Matlab
0
2024-09-28