过度拟合解决方法:权值衰减。它在每次迭代过程中以某个小因子降低每个权值,这等效于修改E的定义,加入一个与网络权值的总量相应的惩罚项。此方法的动机是保持权值较小,从而使学习过程向着复杂决策面的反方向偏置。验证数据是最成功的方法之一,在训练数据外再为算法提供一套验证数据,并使用在验证集合上产生最小误差的迭代次数。虽然这不是总能明显地确定验证集合何时达到最小误差,但它通常能有效减少过度拟合问题。
解决过度拟合问题的方法Matlab人工神经网络中的权值衰减
相关推荐
MATLAB编程解决TSP问题的Hopfield人工神经网络应用
介绍了如何利用MATLAB软件编程,应用Hopfield人工神经网络解决旅行商问题(TSP)。作者进行了亲自测试,确认其有效性,欢迎您下载使用。
Matlab
2
2024-07-14
国防科大人工神经网络课件感知机权值优化示意图
本课件详细展示了感知机权值调整算法的示意图,通过样本E的不同误差值(0.85、0.45、0.25、0.05)说明了其工作原理。
Matlab
0
2024-08-23
MATLAB负荷预测基于人工神经网络(ANN)的预测方法
MATLAB负荷预测是一种基于人工神经网络(ANN)的先进预测技术。该方法利用MATLAB软件平台,通过分析历史数据和模式识别,实现对电力系统负荷未来趋势的精确预测。这种技术不仅提高了预测的准确性,还能帮助电力管理者优化资源分配和能源利用效率。
Matlab
0
2024-08-25
预见神经网络的问题MATLAB开发中的挑战
这个项目是一个简单的案例,代表了径向基函数(RBF)神经网络在预测问题时可能遇到的挑战。特别是在使用和收益问题方面,它有待改进。
Matlab
3
2024-07-17
Matlab人工神经网络的符号说明及应用
Matlab中人工神经网络的符号说明如下:xji表示单元j的第i个输入,wji表示与xji相关联的权值,netj表示单元j的输入的加权和,oj表示单元j计算出的输出,tj表示单元j的目标输出,sigmoid函数用于计算输出,outputs表示网络最后一层的输出单元集合,Downstream(j)表示单元j的输出到达的单元集合。
Matlab
2
2024-07-16
优化BP人工神经网络算法的Matlab程序
这是关于BP人工神经网络算法的Matlab程序,能够有效运行并应用于实际问题解决。
Matlab
0
2024-10-02
基于人工神经网络的手写数字识别
该项目利用人工神经网络技术,构建了一个MATLAB手写数字识别系统,实现了对手写数字的自动识别。
Matlab
2
2024-05-25
Matlab中RBF模拟神经网络的应用函数拟合与模式分类
Matlab中的RBF模拟神经网络主要应用于函数拟合和模式分类任务。该网络以其在处理非线性问题上的优越性能而闻名。
Matlab
2
2024-07-19
使用神经网络解决蘑菇数据集的分类问题-MATLAB代码
利用MATLAB机器学习工具箱,我解决了蘑菇数据集的分类问题。我的解决方案包含在名为“solution.csv”的文件中,其中包含了对给定数据的类别预测。此外,存储库中的“solution_code.m”文件包含了完整的源代码。我采用了深度学习方法,使用具有单个隐藏层的神经网络进行了学习过程。我首先对数据集进行了分析,并剔除了对模型无帮助的属性,如'gill-attachment'中97.64%的值为'f'、'veil-type'中100%的值为'p'以及'veil-colour'中97.73%的值为'w'。随后,我注意到某些属性中特定值在数据集的底部更为集中,而在顶部较少,因此我对其进行了随机分布以打破对称性。最后,我将数值数据类型(如半径和重量)与分类数据类型分开处理,确保每种数据类型都得到适当的分析。
Matlab
5
2024-07-23