资源调优
当前话题为您枚举了最新的资源调优。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
HBase 性能调优
hbase.regionserver.handler.count:线程数目,默认10,推荐150,过大可能导致GC频繁或内存溢出。
Hbase
3
2024-04-30
ORACLE调优秘籍
全面分析PGA和SGA
助力开发者优化ORACLE数据库
Oracle
4
2024-05-25
SQL性能调优
加速数据库查询
数据库查询性能是应用效率的关键。以下技巧有助于优化SQL查询:
1. 理解查询计划: 使用 EXPLAIN 或 EXPLAIN ANALYZE 命令分析查询执行计划,识别瓶颈。
2. 索引优化:* 为经常出现在 WHERE、JOIN、ORDER BY 和 GROUP BY 子句中的列创建索引。* 避免过度索引,过多的索引会影响写入性能。
3. 查询结构优化:* 尽量使用 JOIN 代替子查询,尤其在处理大数据集时。* 避免使用 SELECT *,明确选择需要的列。* 使用 LIMIT 限制返回结果数量。
4. 数据类型优化:* 使用最有效的数据类型存储数据,例如使用 INT 而不是 VARCHAR 存储数字。* 避免对索引列进行函数操作,这会使索引失效。
5. 其他优化技巧:* 使用数据库缓存机制,例如查询缓存、对象缓存等。* 定期进行数据库维护,例如更新统计信息、重建索引等。
注意:* 具体的优化方法取决于数据库类型、数据量和应用场景。* 在进行任何优化之前,请先备份数据。
SQLServer
2
2024-05-27
Oracle SQL调优
Oracle性能优化方法
Oracle
2
2024-05-28
程序访问调优
找出资源利用率高或饱和的瓶颈点。
根据错误、利用率和饱和度,逐步缩小问题范围。
分析响应时间最长的环节,持续细分找出影响因素。
熟悉应用特性,包括版本、功能、类型、配置等。
注重架构和逻辑设计,避免架构缺陷和程序问题。
MySQL
5
2024-05-28
第08讲-Spark性能优化与资源调优策略
Spark性能优化
Spark性能优化是提升大数据处理效率的关键,尤其在企业级应用中。资源调优是优化的重要一环,涉及到对Spark作业的资源配置,如Executor数量、内存大小、CPU核心数及Driver内存设置等。以下是对这些关键参数的详细解析与调优建议。
1. num-executors
此参数设定Spark作业所需Executor数量,默认值可能难以充分利用资源,导致运行缓慢。建议设定在50至100之间,视数据规模和计算需求而定,避免过多或过少导致资源分配不平衡。
2. executor-memory
每个Executor的内存大小直接影响作业性能和避免OOM异常。通常建议为4GB至8GB,但需视队列内存限制及负载情况调整。总内存申请量不应超过队列总内存的1/3至1/2,以便保障其他作业正常运行。
3. executor-cores
此参数定义了Executor的CPU核心数,影响并发task能力。推荐设置为2至4个核心,视队列CPU核心限制及资源共享需求调整,避免资源独占。
4. driver-memory
设置Driver内存大小,Driver负责任务调度和结果收集。通常1GB内存已足够,但若需要将大量数据拉到Driver端,需确保内存足够,避免内存溢出。
5. spark.default.parallelism
设定每个stage的默认task数量,直接影响并行度。建议task数量在500至1000之间,以充分利用并行计算能力,同时避免task碎片化,影响效率。
其他参数还包括**spark.shuffle.memoryFraction**(用于shuffle操作的内存比例)。
spark
0
2024-10-28
Oracle性能调优精要
深入解析高级OWI和Oracle性能调优技巧,提升数据库性能。
Oracle
9
2024-04-30
Spark性能调优秘诀
Spark以内存计算著称,因此CPU、带宽和内存资源都可能成为性能瓶颈。通常情况下,内存充足时,瓶颈主要受限于网络带宽。然而,有时也需要进行序列化优化等操作来降低内存占用率。
本指南着重介绍两方面内容:
数据序列化:这是提升网络性能和降低内存消耗的关键。
内存优化:我们将简要介绍一些实用技巧。
通过优化数据序列化,可以有效减少数据在网络传输过程中占用的带宽,并降低内存存储压力。内存优化技巧则有助于更有效地利用内存资源,避免不必要的浪费,从而提升整体性能。
spark
5
2024-05-12
ASE系统调优建议
ASE系统调优建议
避免使用游标,除非绝对必要。
尽量使用小事务。
索引的创建应与SQL语句的编写相结合。
选择合适的连接方式(长连接或短连接)。
尽量减少网络流量。
在高并发场景下,可以考虑将部分计算任务分担给客户端。
将联机交易处理系统与查询统计系统分离。
Sybase
2
2024-05-27
Spark调优策略详解
深入探讨了如何优化Spark性能,涵盖了性能监控、数据倾斜处理、shuffle调优等关键内容。讨论了合理配置worker与executor、内存分配优化、CPU使用率监控及网络带宽管理等调优要点,并通过实际案例展示了企业级大数据平台的调优方法。
spark
0
2024-09-13