Spark性能优化
Spark性能优化是提升大数据处理效率的关键,尤其在企业级应用中。资源调优是优化的重要一环,涉及到对Spark作业的资源配置,如Executor数量、内存大小、CPU核心数及Driver内存设置等。以下是对这些关键参数的详细解析与调优建议。
1. num-executors
此参数设定Spark作业所需Executor数量,默认值可能难以充分利用资源,导致运行缓慢。建议设定在50至100之间,视数据规模和计算需求而定,避免过多或过少导致资源分配不平衡。
2. executor-memory
每个Executor的内存大小直接影响作业性能和避免OOM异常。通常建议为4GB至8GB,但需视队列内存限制及负载情况调整。总内存申请量不应超过队列总内存的1/3至1/2,以便保障其他作业正常运行。
3. executor-cores
此参数定义了Executor的CPU核心数,影响并发task能力。推荐设置为2至4个核心,视队列CPU核心限制及资源共享需求调整,避免资源独占。
4. driver-memory
设置Driver内存大小,Driver负责任务调度和结果收集。通常1GB内存已足够,但若需要将大量数据拉到Driver端,需确保内存足够,避免内存溢出。
5. spark.default.parallelism
设定每个stage的默认task数量,直接影响并行度。建议task数量在500至1000之间,以充分利用并行计算能力,同时避免task碎片化,影响效率。
其他参数还包括**spark.shuffle.memoryFraction**
(用于shuffle操作的内存比例)。