AT TIME ZONE

当前话题为您枚举了最新的 AT TIME ZONE。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Oracle 19c Time Zone Upgrade from 32to 42Resolving TSTZ Data Pump Errors
Oracle 19c 升级时区版本 32 到 42,解决数据泵导数据 TSTZ 报错问题。
Reverb Time Calculator Estimating Reverberation Time from Multiple Microphone Records Using Time Log-MATLAB Development
The rt_script.m is the main program. It generates a text file and a PDF report to log the estimated reverberation time. Two measurement methods can be used: 1) Speaker On-Speaker Off Method, and 2) Balloon Burst Method. The documentation provides basic programs for both methods. It has been found that the Speaker On-Speaker Off Method is significantly more accurate than the Balloon Burst Method. The Balloon Burst Method tends to have over 50% error below 1000 Hz. The reverb_time.m calculates the reverberation time from the 1/3 octave band time logs. Time records of random test signals, generated by the script makelNHANESNoisesm_ed.m (also available on MATLAB Central File Exchange), are ideal for measuring reverberation time using the Speaker On-Speaker Off Method. The Balloon Burst Method can be used to process the same file multiple times to roughly estimate the reverberation time for each 1/3 octave band.
SurfZoneFunGUI_v1.0Video Processing for Surf Zone Analysis-MATLAB Development
SurfzoneFun读取并处理视频以: 1. 逐步平均视频帧 2. 创建一个单个像素轮廓的时间堆栈 3. 使用阈值和随时间推移的总和来确定图像的破损部分,以给出超出的百分比。这个软件包的主要目的是提供输出,这些输出将对将来的分析有用,同时也可以直观地说明平均、堆叠和分解处理。享受引用为:Shand,T.和Quilter,P.(2021)Surfzone Fun v1.0 [源代码]。 https://doi.org/10.24433/CO.5658154.v1有关更新,请参见: https://github.com/tdshand/SurfzoneFun
Top NoSQL Time Series Databases Overview
Time Series Database (TSDB) is a database system specifically designed for efficiently storing, managing, and processing time series data. This type of data typically involves numerical values associated with specific timestamps, commonly found in monitoring, IoT, financial transactions, and operational analytics. This article explores several key NoSQL time series databases, including InfluxDB, ScyllaDB, CrateDB, and Riak TS, as well as Apache Druid, highlighting their characteristics and application scenarios. 1. InfluxDB InfluxDB, developed by InfluxData, is an open-source time series database designed for real-time analysis and big data. It features high write performance and low-latency query capabilities, supporting complex time series data queries. InfluxDB is particularly suited for handling data from sensors, logs, metrics, and is widely used in monitoring systems, IoT applications, and real-time analysis scenarios. 2. ScyllaDB ScyllaDB is a high-performance distributed database based on Apache Cassandra. It offers higher throughput and lower latency than native Cassandra. Its optimized time series data processing capabilities make it ideal for real-time applications such as monitoring and log analysis. ScyllaDB supports multi-data center deployments to ensure high availability and consistency of data. 3. CrateDB CrateDB is a column-oriented distributed SQL database that can handle large-scale time series data. It provides a SQL interface, making time series data operations more familiar to traditional database users. CrateDB is suitable for projects that require rapid analysis of large amounts of time series data and prefer using SQL for querying. 4. Riak TS Developed by Basho Technologies, Riak TS is a NoSQL solution focused on time series data. It inherits the core features of Riak, such as high availability and scalability. Riak TS is suitable for applications that need to store and retrieve time series data in a distributed environment, such as recording equipment status in the telecommunications or energy industries. 5. Apache Druid Although Druid is not a traditional NoSQL database, it is a columnar data store designed for real-time analytics. Druid is renowned for its excellent Online Analytical Processing (OLAP) performance and low-latency query capabilities, making it suitable for big data real-time analysis and business intelligence applications. These databases each have their strengths. InfluxDB and Druid excel in real-time analytics, ScyllaDB and CrateDB offer powerful distributed processing capabilities, while Riak TS specializes in distributed storage and retrieval. Developers should consider data scale, performance requirements, query complexity, SQL support, and team expertise when choosing a solution.
CS4319_Time-开源项目概述
CS4319_Time-开源项目是由Tomy Le为陈平博士设计的数据挖掘开源软件。提供学习者和开发者探索、理解和应用数据挖掘技术的平台,鼓励协作与知识分享。项目核心包括数据挖掘的预处理、模式发现和后处理阶段,涉及时间序列分析、机器学习算法如监督学习和无监督学习,以及开源社区参与。支持Python编程,结合Pandas、Numpy、Scipy、Scikit-learn等库进行数据操作和机器学习。
Accelerating Real-Time Analytics with Spark and FPGAaaS
使用 Spark Streaming 进行实时分析 在当今数据驱动的世界里,实时数据分析变得至关重要。P.K. Gupta 和 Megh Computing 在 #HWCSAIS17 中提出了一种利用 Spark Streaming 结合 FPGA as a Service (FPGAaaS) 的技术来加速实时分析的方法。 Spark Streaming 用于实时分析 Spark Streaming 是 Apache Spark 的一个重要模块,它提供了对实时流数据处理的支持。通过微批处理的方式,Spark Streaming 能够高效地处理大量的流数据,并且能够与 Spark 的核心功能(如 SQL、MLlib 等)无缝集成。这使得 Spark Streaming 成为处理实时数据流的理想选择。- ETL (Extract, Transform, Load):Spark Streaming 支持从多种来源提取数据,进行转换处理后加载到不同的存储系统中。- 数据处理:包括清洗、聚合、过滤等操作,这些操作可以利用 Spark 的强大计算能力快速完成。- 机器学习 (ML) 和深度学习 (DL):Spark 的 MLlib 库提供了丰富的机器学习算法,而深度学习则可以通过第三方库如 Deeplearning4j 或 TensorFlow on Spark 实现。 为什么使用 FPGA:低延迟和高吞吐量 现场可编程门阵列 (FPGA) 是一种可编程集成电路,其特点是可以根据特定的应用需求进行定制化设计。FPGA 在处理高速数据流时表现出色,特别是在需要低延迟和高吞吐量的场景下。- 内联处理:FPGA 可以直接对接网络接口卡 (NIC),实现数据的内联处理。这种架构可以显著减少数据传输延迟,并提高处理效率。- 卸载处理:将一些计算密集型任务卸载到 FPGA 上执行,从而减轻 CPU 的负担并提升整体系统的性能。 使用 FPGA 加速器面临的挑战 尽管 FPGA 提供了诸多优势,但在实际应用中也会遇到一些挑战:- 开发难度:相比于传统的软件开发,FPGA 的开发过程更为复杂,需要专门的知识和工具支持。- 调试困难:FPGA 中的错误定位和调试比传统软件更加困难。- 资源限制:FPGA 资源有限,需要合理规划资源分配以避免瓶颈。 Megh 平台 Megh Computing 提出了相关解决方案。
Acycle Time Series Analysis Software for Research and Education
Acycle: Acycle是一个用于研究和教育的时间序列分析软件,提供强大的分析工具和用户友好的界面,适合学术研究和教学使用。
Linux Soft Real-Time Target v2.4Custom Linux Target for Real-Time Workshop in MATLAB Development
The Linux Soft Real-Time Target is defined by MathWorks for Real-Time Workshop. The target uses the POSIX real-time clock to generate periodic signals, waking up the model process at each time step. The process runs with the highest priority as defined by the scheduler, requiring root privileges to execute. The Linux soft real-time target does not operate as a hard real-time system because the Linux kernel itself is not preemptive. Thus, model execution can sometimes experience delays. The standard Linux kernel preempts every 10 ms. To achieve higher resolution task switching and improve execution precision, one can modify the HZ value in asm/param.h (included in the kernel source code) and recompile the kernel. To include C S-Functions from other directories, place the rtwmakecfg.m file found in this package into the source directory of the C S-Function. The C S-Function must then be processed accordingly.
Discrete.Time.Signal.Processing.2nd.Ed
The Discrete Time Signal Processing 2nd Edition focuses on the fundamental concepts of Discrete-Time Signal Processing and digital signal processing. This edition covers advanced topics like filter design, Fourier analysis, and sampling theory. Key algorithms for signal manipulation and transformations are explained in-depth, providing insights into both theoretical and practical aspects of signal processing.
Fill Missing Data in Time Series Using NaN in MATLAB
该代码有助于填补时间序列数据中的空白。为此,它需要一个缺少日期和时间的 DateTime 数组以及具有相应缺失值的 测量数组。它将检查日期数组中缺少的日期,并为测量数组中的相应日期填充 NaN,这将有助于获取连续的时间序列数据。