binary key background model
当前话题为您枚举了最新的 binary key background model。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
VAD Function in MATLAB Code-pyBK Speaker Differentiation Python System Based on Binary Key Modeling
The vad function MATLAB code for pyBK implements speaker differentiation on a list of audio files by performing speaker binarization (speech segmentation and clustering in multi-speaker scenarios). The system utilizes a binary key background model (KBM), which is trained on conference data, eliminating the need for external training datasets. This results in a system that is easy to operate and adjust for speaker differentiation tasks. Additionally, the implementation includes useful features for the speaker digitization system pipeline. The code was developed and tested in Python 3.6 using conda, relying on common packages for audio processing, feature extraction, and speech activity detection. Installation steps:1. $ conda create -n pyBK python=3.62. $ source activate pyBK3. $ conda install numpy4. $ conda install -c conda-forge librosa5. $ pip install webrtcvad6. $ git clone h...
Matlab
0
2024-11-05
Binary Data Storage in Oracle-Managing Binary Objects
Oracle provides several types for storing binary data such as BFILE, BLOB, BAW(L), and LONG RAW to handle data like images, sounds, and videos. Typically, in real-world projects, images and sounds are not stored directly in the database. Instead, the paths to the files are stored, and only when security requirements are high, the actual files might be stored in the database. BAW(L), LONG RAW, BLOB, and BFILE each serve different use cases depending on the data type and storage requirements.
Oracle
0
2024-11-05
Binary Image Processing in MATLAB
In Binary Image processing, pixels are represented as either 0 or 1, where 0 represents black and 1 represents white. This type of image is often used in image segmentation, object recognition, and thresholding tasks in MATLAB. The conversion of a grayscale image to binary involves setting a specific threshold value, above which pixel values are set to 1, and below which they are set to 0.
Matlab
0
2024-11-06
Signal to Binary Conversion 5Methods for Mapping Signals to Binary Streams in MATLAB Development
将信号转换为二进制表示的五种方法。Arthur Petrosian概述的方法《有限序列的Kolmogorov复杂度和识别不同的前期脑电图模式》。方法有:
平均法:如果高于信号平均值,则样本分配1。
修正区法:如果超出平均值正负标准差,则样本指定为1。
微分法:如果2个连续样本之间的差异为正,则样本分配1。
区域差分法:如果连续样本之间的差异大于信号的标准偏差,则样本分配为1。
修正区微分法:类似于4,具有先验选择的边界值。
Matlab
0
2024-11-05
Machine Learning in Matlab Background Separation Techniques for Particle Physics Research
在粒子物理学研究中,背景分离技术是数据分析的重要部分,尤其是在信号与背景的分类中,信号代表我们感兴趣的粒子事件。我使用了多种机器学习技术,尤其是背景分离,来进行数据分析,以获得在其他数据集上的分析经验。本研究包括了在Coursera的Andrew Ng机器学习课程中的一些项目,这些项目使用了Matlab进行实现。
Matlab作为一种高级科学计算语言,能够处理各种机器学习任务,特别是信号与背景的分类。课程内容包括线性回归、逻辑回归、神经网络、支持向量机、K均值聚类等常见模型的应用。这些模型的实现涉及到诸如梯度下降、成本函数等技术细节。
例如:
例1:在练习1中,我们使用了线性回归模型,通过输入值预测实值输出,应用于房价预测,重点讨论了成本函数的概念,并实现了梯度下降算法。
例2:在另一个练习中,我们构建了逻辑回归模型,以预测学生是否能被大学录取。
这些方法的实现需要通过Octave或MATLAB来进行,帮助我们深入理解并实践机器学习算法的核心原理。
Matlab
0
2024-11-05
解决ERROR ShellFailed to locate the winutils binary in the hadoop binary path java.io.IOException
在使用Hadoop时遇到了'ERROR Shell:Failed to locate the winutils binary in the hadoop binary path java.io.IOException'的问题。这个错误提示表明系统无法找到Hadoop所需的winutils二进制文件。为了解决这个问题,可以尝试配置正确的Hadoop二进制路径,确保系统能够正确访问winutils文件。
Hadoop
2
2024-07-30
自定义CI Model,基于CI_Model扩展
数据库注入过滤
分页条件返回
增删查改操作
MySQL
3
2024-05-15
Model Predictive Control Overview
本资源讲解了模型预测控制的基本原理与基本的模型,书后包含有MATLAB源代码,是英文原版,但是不难翻译。
Matlab
0
2024-11-01
Simulink Model of Asynchronous Motor
This model represents the asynchronous motor in different coordinate systems and can be run in MATLAB 2009a (7.8). It includes various reference frames to analyze the motor's performance under different conditions.
Matlab
0
2024-11-06
MySQL PP教程使用BINARY属性详解
使用BINARY属性可以将列值作为二进制串处理,类似于BLOB类型。与数值型功能相同,NULL和NOT NULL功能相似,默认设置与数值型相似。
MySQL
3
2024-07-26