随机几何图形

当前话题为您枚举了最新的随机几何图形。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

随机几何图形可视化应用程序自定义创建和绘制随机几何图形的工具
随机几何图是一种无向空间图,其中节点随机分布在二维正方形[0,1]中。如果两个节点之间的欧几里得距离小于或等于指定半径,则它们之间存在边。此说明性应用程序使用GUIDE创建,展示如何构建随机几何图,并提供有关其结构的见解。主要特点包括:可以调整节点数(10、30、50、100、200)、变化半径(0.1、0.2、0.3、0.5)、绘制以每个节点为中心的圆周,生成Adjacency矩阵和节点坐标。节点连接通过颜色条表示。此外,还提供plotRGG.m函数,支持用户绘制自定义的随机几何图形。初次接触GUI,如有问题请指正。
matlab源代码-RCMSA鲁棒几何拟合随机聚类模型
该matlab开源源码实现了鲁棒几何拟合的随机聚类模型。该模型由TT Pham、T.-J. Chin、J. Yu 和 D. Suter 提出,通过随机聚类进行几何模型的稳健拟合。相关论文包括: IEEE CVPR会议论文,普罗维登斯,罗德岛,美国,2012年,标题:Random Cluster Model for Geometric Fitting。 IEEE TPAMI期刊文章,2014年,标题:The Random Cluster Model for Robust Geometric Fitting。 其他相关文献:TT Pham, T.-J. Chin, K. Schindler, 和 D. Suter提出的交互几何先验和自适应可逆跳跃MCMC多结构拟合方法,发布于NIPS 2011。 此开源包为几何拟合领域的研究者提供了一个强大的工具,能够有效解决多模型拟合的鲁棒性问题。
代数几何FU LEI
代数几何springer扶磊研究生数学丛书第6册密码
KerasDeepWalk图像矩阵Matlab代码基于随机游走构建大型图形的单词嵌入
在Theano上进行的DeepWalk由Brian Perozzi开发,支持在多个GPU上进行分布式训练。现在采用Keras构建模型的灵活版本。随着Keras现在支持TensorFlow作为后端,这使得训练图形嵌入变得更加简便。
Matlab图像几何投影技术
在Matlab环境中,可以进行图片的水平、垂直以及对角投影处理,方便直接应用。
几何信息的多维索引表达
在数据库中,几何信息可以用多种标准化方式表示。例如,多边形可以用其顶点序列来表示,也可以通过三角剖分的方法表达。对于复杂的多边形,通常会赋予其唯一的标识符。
麦克风密度几何设计
基于麦克风密度的统计分析,优化阵列几何形状以提升沉浸式环境中语音信号波束形成性能。提出目标函数规则的优化算法,综合声源分布先验知识和声学场景概率描述,构建具有出色SNR性能的阵列。通过变异常规配置,克服常规阵列局限性,提供易于安装且具有良好SNR结果的阵列。
通过线束对2D几何对象进行采样Eclipse形状的几何采样方法
主要用途展示:通过检测Eclipse边缘和入界区域的线束交点来采样网格图。坐标追踪并映射为图像。警告:随机射线束可能需要更长时间进行投影,具体取决于处理器性能。尚未整合扇形和平行射线束。仅投影了10行,行数可以在rayLinesScheme_parallel.m、rayLinesScheme_fan.m和rayLinesScheme_random.m中设置。帮助部分未包含。
主成分分析的几何诠释
主成分分析是一种通过降维将高维数据投影到低维空间的技术,其中主成分是低维空间中方差最大的方向。它广泛应用于数据可视化、降噪和特征提取等领域。
图像处理教程图像几何变换详解
在图像处理中,图像的几何变换是一个重要的主题。包括图像平移、正变换和逆变换,以及形态学结构元素的创建和应用。这些技术在处理图像时起着至关重要的作用。