时空分析

当前话题为您枚举了最新的 时空分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

CSC-791-时空数据挖掘时空数据挖掘代码
CSC-791-空间数据挖掘空间/时间数据挖掘代码
网络热点事件时空演化与可视化分析
面向网络热点事件舆情分析需求,本研究探索了开放、互动网络环境下用户行为及其对事件传播时空特征的影响。研究利用数据挖掘技术,从网络评论中提取热点事件的时空信息,并通过可视化方式呈现关注群体的地理分布,揭示事件舆论的动态演变,为舆情管理决策提供支持。
鹰嘴豆白叶枯病时空动态及环境影响因素分析
本研究探究鹰嘴豆白叶枯病初次感染源的时空演变规律,并确定影响其时空变化的关键环境因素。研究数据及分析代码已公开存档,可通过此处链接获取,以确保研究的可重复性和数据可用性。研究结果可为鹰嘴豆白叶枯病的预测预警和精准防控提供科学依据。
东亚地区南北气旋活动频数的时空特征分析(2011年)
利用1953至2007年NCEP/NCAR再分析的逐日海平面气压场资料,系统分析了东亚地区南方和北方气旋的时间和地域分布特征。研究结果显示,南北气旋的活动频数表现出明显的年际和年代际变化。在全球气候年代际跃变的背景下,20世纪80年代初,北方气旋的活动频数发生了显著变化。月际分布表明,北方气旋在5月份频数最高,而南方气旋则在8月份达到峰值。春季,北方气旋活动频繁,呈现出蒙古国中部和中国东北地区北部两个明显的高频中心;夏季,南方气旋则主要集中在中国东部沿海和日本南部海面。研究还发现,南北气旋的季节变化与大气环流格局密切相关。
Python 版时空大数据交通分析挖掘可视化
提供了交通时空大数据分析、挖掘、可视化源码,助力理解和实践相关技术。
基于出租车轨迹的城市居民出行时空特征分析
研究基于出租车轨迹数据的城市居民出行时空特征,揭示居民出行的时间和空间分布规律。通过分析出租车轨迹和POI数据,研究发现深圳市居民出行存在早、中、晚高峰,以及空间上的局部密集和圈层递减现象。此外,研究还分析了居民购物和办公行为的出行时间和距离特征的相似性。GIS技术在居民出行时空特征分析中发挥关键作用,结合POI数据,能够量化分析出行规律。数据挖掘技术也能通过出租车轨迹和POI数据挖掘,揭示出居民出行的时空分布规律。研究结果为城市管理和规划提供了重要依据,帮助理解城市功能结构,推动智能化和信息化发展。
GPS及图像轨迹时空数据挖掘
利用GPS数据与图像数据相结合,开展时空数据挖掘。
面向共享出行的时空众包计算
童咏昕老师在CCF会议上的“面向共享出行的时空众包计算”PPT展示了如何利用时空众包技术优化共享出行服务。这一技术通过整合时间和地点信息,实现了更高效的出行方式,为城市交通提供了创新解决方案。
中国冲击地压时空分布特征研究
采用统计调研的方法, 在调研全国冲击矿井空间分布的基础上, 对忻州窑矿、三河尖矿、千秋煤矿共179次冲击地压的发生时间进行统计分析。研究认为冲击地压矿井在中国北多南少、东多西少, 且呈现一定空间聚集特征; 冲击地压发生时间并不集中在某一特定的年、月或日, 发生时间具有离散性; 煤炮是冲击前的重要前兆信息, 煤层合并区、孤岛临空巷道端头及超前应力区、多巷交汇区是冲击地压高发区, 底板及两帮是受破坏较为严重的区域; 分层开采、炮采及坚硬顶板长距离悬顶等条件下冲击危险性增强。
AnomalyDetector MATLAB非参数时空异常检测代码概述
AnomalyDetector 是一个用于 MATLAB 环境的非参数异常检测器,可用于进行 时空异常检测。源代码在 Linux 系统下使用 MATLAB R2009b 进行了测试。此工具不依赖于非标准库,除了用于可视化的 tight_subplot.m 函数外,代码所需的所有文件均在工作目录中。数据集位于“数据”文件夹中,其中包含清理和对齐的传感器数据。 要测试 非参数方法,可在工作目录中键入 nonparametric_approach。 要测试 概率方法,则可通过在工作目录中键入 probabilistic_approach。 无论哪种方法,均可在数秒内获得测试结果。