利用GPS数据与图像数据相结合,开展时空数据挖掘。
GPS及图像轨迹时空数据挖掘
相关推荐
基于GPS轨迹的周期模式挖掘方法探讨
针对周期行为挖掘中时空数据采样频率不确定、数据稀疏和时空数据噪声等问题,采用GMPF(GPS Multi-Periodic Find)算法探索用户的周期模式。该方法首先将用户轨迹序列转换为兴趣点集合,然后针对每个兴趣点进行周期挖掘。在微软亚洲研究院的Geolife项目中,利用182名用户4年的GPS数据进行了验证实验,证明了该方法的有效性,对数据噪声和稀疏性具有较好的适应性。
数据挖掘
2
2024-07-16
CSC-791-时空数据挖掘时空数据挖掘代码
CSC-791-空间数据挖掘空间/时间数据挖掘代码
数据挖掘
4
2024-07-16
GPS轨迹停留点识别算法
基于多层分割算法,从GPS轨迹数据中识别活动停留点,挖掘出行信息。
数据挖掘
4
2024-05-26
轨迹数据挖掘探索
这篇综述文章由郑宇撰写,深入探讨了轨迹数据挖掘的相关主题。
算法与数据结构
0
2024-08-11
路线熟悉度与车险风险: 基于GPS轨迹数据的分析
路线熟悉度对车险风险的影响
通过分析车主最常行驶的前十条路线行程数量占比, 探究路线熟悉度与车险风险水平之间的关系。
研究结果表明:
路线熟悉程度与车险风险水平显著相关。
随着熟悉路线行程数量占比的上升, 车险出险频率明显下降, 这与人们的普遍认知一致。
使用前一、前三或前十位熟悉路线计算占比, 均可得出上述结论, 其中前十位熟悉路线行程数量占比对风险的区分能力最强 (如图24所示)。
算法与数据结构
3
2024-05-23
开源时空数据挖掘库c2001空间时间挖掘工具
当前库包含通用关联规则挖掘框架(GARMF),支持从事务、空间数据集和时空数据集中挖掘关联规则,并支持增量挖掘。另外还包括规则过滤库(RFL)和规则评估库。此外,还提供了DAP-Shell、GARMF和RFL的GUI界面。
数据挖掘
2
2024-08-02
基于出租车轨迹的城市居民出行时空特征分析
研究基于出租车轨迹数据的城市居民出行时空特征,揭示居民出行的时间和空间分布规律。通过分析出租车轨迹和POI数据,研究发现深圳市居民出行存在早、中、晚高峰,以及空间上的局部密集和圈层递减现象。此外,研究还分析了居民购物和办公行为的出行时间和距离特征的相似性。GIS技术在居民出行时空特征分析中发挥关键作用,结合POI数据,能够量化分析出行规律。数据挖掘技术也能通过出租车轨迹和POI数据挖掘,揭示出居民出行的时空分布规律。研究结果为城市管理和规划提供了重要依据,帮助理解城市功能结构,推动智能化和信息化发展。
数据挖掘
1
2024-07-13
轨迹数据挖掘中的关键技术综述
轨迹数据挖掘涉及从轨迹数据中提取行为模式和规律,应用于事故调查、群体跟踪等领域。主要技术包括:伴随模式挖掘与频繁模式挖掘。
伴随模式挖掘:通过提取伴随的移动对象,分析对象群体行为。例如,分析时空环境中对象的群体特征,识别Flock, Convoy, Swarm, Gathering等模式。此技术对群体行为的识别有重要应用。
频繁模式挖掘:主要从大规模轨迹数据中发现频繁时序模式。这些模式在旅游推荐、生活模式挖掘、地点预测等方面有广泛应用。具体方法包括:
基于简单分段的轨迹挖掘方式
基于聚类的兴趣区域挖掘方式
基于路网匹配的频繁模式挖掘方式
算法方面,频繁模式挖掘通常使用以下两种算法:- 基于Apriori算法的模式挖掘:适用于频繁项集和时序数据的挖掘。- 基于树结构的模式挖掘:优化了复杂模式的高效挖掘。
通过这些挖掘技术,轨迹数据的应用涵盖广泛,从用户行为预测到位置推荐,轨迹数据挖掘的技术正在不断拓展。
算法与数据结构
0
2024-10-29
Python 版时空大数据交通分析挖掘可视化
提供了交通时空大数据分析、挖掘、可视化源码,助力理解和实践相关技术。
数据挖掘
6
2024-04-30