针对周期行为挖掘中时空数据采样频率不确定、数据稀疏和时空数据噪声等问题,采用GMPF(GPS Multi-Periodic Find)算法探索用户的周期模式。该方法首先将用户轨迹序列转换为兴趣点集合,然后针对每个兴趣点进行周期挖掘。在微软亚洲研究院的Geolife项目中,利用182名用户4年的GPS数据进行了验证实验,证明了该方法的有效性,对数据噪声和稀疏性具有较好的适应性。
基于GPS轨迹的周期模式挖掘方法探讨
相关推荐
基于动态轨迹模式挖掘的位置预测方法研究
针对海量用户轨迹数据,该研究提出了一种名为PRED的动态轨迹模式分析和位置预测方法。PRED方法首先利用改进的模式挖掘模型从轨迹数据中提取频繁模式(T-模式)。随后,该方法使用DPTUpdate算法构建名为DPT(dynamic pattern tree)的快捷数据结构,该结构蕴涵时空信息,用于存储和查询移动对象的T-模式。最后,PRED方法通过Prediction算法计算最佳匹配度,预测移动对象的轨迹位置。基于真实数据集的对比实验结果表明,PRED方法能够提供动态分析能力,其平均准确率达到72%,平均覆盖率达到92.1%,相较于现有方法,预测效果显著提升。
数据挖掘
4
2024-05-26
GPS及图像轨迹时空数据挖掘
利用GPS数据与图像数据相结合,开展时空数据挖掘。
算法与数据结构
3
2024-05-26
GPS轨迹停留点识别算法
基于多层分割算法,从GPS轨迹数据中识别活动停留点,挖掘出行信息。
数据挖掘
4
2024-05-26
基于贝叶斯方法的序列模式挖掘
序列模式挖掘算法本算法结合贝叶斯学习,简化挖掘过程,可处理不完备、溢出及噪声数据。
概率模型使用概率论模型描述序列,并利用贝叶斯知识辅助。
算法性能经复杂度分析和性能验证,该算法具有优越性。
数据挖掘
3
2024-05-25
路线熟悉度与车险风险: 基于GPS轨迹数据的分析
路线熟悉度对车险风险的影响
通过分析车主最常行驶的前十条路线行程数量占比, 探究路线熟悉度与车险风险水平之间的关系。
研究结果表明:
路线熟悉程度与车险风险水平显著相关。
随着熟悉路线行程数量占比的上升, 车险出险频率明显下降, 这与人们的普遍认知一致。
使用前一、前三或前十位熟悉路线计算占比, 均可得出上述结论, 其中前十位熟悉路线行程数量占比对风险的区分能力最强 (如图24所示)。
算法与数据结构
3
2024-05-23
产品生命周期中CE方法的应用探讨
随着技术的进步,CE方法在产品生命周期的各个阶段如预研、开发、成长、成熟和衰退阶段都发挥着重要作用。这包括市场研究、数据挖掘和用户体验工程等方面的应用,如竞品的可用性评估、用户模型建立及产品原型评估。此外,还涉及到产品功能的智能化提升、用户细分、业务收入预测等关键步骤,以优化产品的用户体验和市场表现。
数据挖掘
2
2024-07-18
轨迹数据挖掘探索
这篇综述文章由郑宇撰写,深入探讨了轨迹数据挖掘的相关主题。
算法与数据结构
0
2024-08-11
探讨商务智能应用模式和实施方法
商务智能技术的发展备受瞩目,应用于企业运营管理中展现出强大的数据分析能力。专家齐聚中国国际商务智能大会,探讨前瞻性的商务智能理念和应用成果。会上,特约专家发表“部署客户智能——兼谈商业智能应用模式”的报告,引发热烈讨论。
数据挖掘
5
2024-04-30
大数据基于教程的方法探讨
《大数据:基于教程的方法探讨》探索了结构化和非结构化数据融合的工具和技术。重点介绍了Hadoop分布式存储和MapReduce处理,包括Hadoop生态系统的工具和技术、Hadoop分布式文件系统基础设施以及高效的MapReduce处理。本书还包括使用案例和教程,以提供一个全面的集成方法,解答大数据的“什么”、“如何”和“为什么”。
算法与数据结构
0
2024-08-15