Photovoltaic Technology
当前话题为您枚举了最新的Photovoltaic Technology。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Photovoltaic Power Generation Simulation Model
The photovoltaic power generation simulation model includes valuable foreign-language materials that help in learning the entire process of photovoltaic power generation. This model is ideal for delving into the underlying mechanisms of photovoltaic systems and understanding their practical applications in real-world settings.
Matlab
0
2024-11-06
wimax-technology-broadband-wireless-access
WiMAX技术概述
WiMAX(Worldwide Interoperability for Microwave Access)是一项为提供宽带无线接入而设计的技术标准,基于IEEE 802.16协议系列。WiMAX能够在固定、便携式或移动环境下提供高速互联网连接服务。相较于传统的有线宽带,WiMAX提供了更灵活的部署方式和更广的服务覆盖范围。
技术特点
高带宽: WiMAX技术能够提供最高达70Mbps的下载速度,满足大部分用户对高速数据传输的需求。
长距离覆盖: 相较于其他无线技术,如Wi-Fi,WiMAX的有效传输距离理论上可达50公里。
多用途性: 除了家庭或企业的宽带接入,WiMAX还支持视频会议、在线教育等应用。
QoS支持: WiMAX提供强大的服务质量(QoS)保障机制,确保不同业务需求的数据传输质量。
技术架构
WiMAX系统主要包括基站(Base Station, BS)和用户端设备(Customer Premise Equipment, CPE)。- 基站(Base Station, BS): 负责整个WiMAX网络的核心控制功能,包括资源分配和连接管理。- 用户端设备(CPE): 通常安装在用户家中或办公室,通过无线信号与基站通信,实现宽带上网服务。
工作频段
WiMAX支持多种工作频段,主要分为两种类型:- 许可频段: 2.3-2.4GHz和3.3-3.8GHz,这些频段需经过批准使用,有助于减少干扰。- 非许可频段: 5.1-5.8GHz,这些频段无需特别许可,但可能受到干扰。
应用场景
WiMAX的应用广泛,包括:1. 固定宽带接入: 提供稳定的互联网连接。
Access
0
2024-11-03
Cognitive Radio Technology Development Trends and Research Status
概述
探讨认知无线电技术(Cognitive Radio Technology, CRT)的国际国内发展现状及其研究趋势。通过对2000年至2020年间所有关于CRT的文章进行统计分析,并以表格的形式展现,该文深入分析了CRT的总体研究情况、系统结构设计、频谱感知、频谱决策、频谱共享、频谱切换等方面的研究进展,并对现有研究成果、未来研究方向及存在的问题进行了综合性的总结和展望。
系统结构设计
集中式结构:早期广泛采用,中心节点管理控制,灵活性差。
分布式结构:逐渐重视,节点自主决策,增强适应性。
混合结构:结合集中与分布优势,成为研究热点。
频谱感知
基本原理:关键技术之一,用于检测未使用的频谱资源。
研究进展:从理论探索到实际应用,感知准确度不断提高。
挑战与机遇:高速移动场景中保持高效感知是挑战,人工智能应用提供新可能。
频谱决策
定义:根据环境信息进行频谱选择的过程。
研究现状:算法改进使决策更智能高效。
未来发展:精准快速的频谱决策将是重点。
频谱共享
概念:探讨多用户共享频谱的有效方法。
统计分析
0
2024-10-31
Dalian University of Technology Database Relational Algebra Exercises
大连理工数据库关系代数练习解析
1. 查找10号部门员工的所有信息
为了获取10号部门员工的所有信息,我们需要从包含员工信息的表(通常命名为emp)中进行选择操作。可以通过以下SQL语句实现:
SELECT * FROM emp WHERE deptno = 10;
这里的关键点在于WHERE子句中的条件deptno = 10用于筛选出10号部门的员工。
2. 找出10号部门工资大于3500的员工的姓名和工资
此题涉及到了筛选特定条件下的数据。我们只需要从emp表中选取10号部门且工资大于3500的员工的姓名和工资。这可以通过以下SQL语句实现:
SELECT ename, sal FROM emp WHERE deptno = 10 AND sal > 3500;
这里的关键在于同时使用了两个筛选条件:deptno = 10和sal > 3500。
3. Union
集合并(UNION)是SQL中的一种操作,用于合并两个或多个SELECT语句的结果集,并去除重复的行。例如:
(SELECT ename FROM emp WHERE deptno = 10) UNION (SELECT ename FROM emp WHERE deptno = 20);
这里,第一个SELECT语句返回10号部门员工的姓名,第二个返回20号部门员工的姓名。
4. 查询10号部门及20号部门的员工(两种方式)
除了使用UNION,还可以通过使用IN操作符或OR逻辑运算符来实现同样的目标。例如:- 使用IN操作符:
SELECT * FROM emp WHERE deptno IN (10, 20);
使用OR操作符:
SELECT * FROM emp WHERE deptno = 10 OR deptno = 20;
这两种方法都会返回10号部门和20号部门的员工。
SQLServer
0
2024-10-31
Infrared Detection Technology for Cold Storage Insulation Defects
冷库维护结构保温缺陷的红外检测技术,李夔宁,王贺,介绍了红外成像法在冷库保温缺陷中的检测原理,以matlab为平台对红外图片进行直方图均衡化及自适应滤波和中值滤波处理,从而直观的展示冷库结构中的保温缺陷,提供了一种高效、直观的检测方法。
Matlab
0
2024-11-05
Comprehensive Guide to LTE Technology From Basics to Advanced Concepts
著名培训机构的LTE培训教材深入浅出,涵盖了LTE技术的方方面面。从基本概念到技术深度,为读者提供了全面的理解。全书共367页,此为第二部分,内容涵盖4G 3GPP标准的技术和概念。以下为本部分的主要章节:
目录- LTE的原理与动机- 1.1 移动无线电:3G与4G的对比- 1.1.1 性能和移动性管理问题- 1.1.2 架构相关问题- 1.1.3 流程与无线相关问题- 1.2 LTE的需求- 1.2.1 总体需求- 1.2.1.1 支持增强型四重播放服务- 1.2.1.2 灵活带宽部署的高数据速率(1.25至20 MHz)- 1.2.1.3 AIPN和PS服务- 1.2.2 LTE物理层的重要特性- 1.2.2.1 物理层的一般特性- 1.2.2.1.1 OFDM- 1.2.2.1.2 可扩展带宽- 1.2.2.1.3 智能天线技术- 1.2.2.1.4 快速调度与AMC- 1.2.2.1.5 无软切换- 1.2.3.2 OFDM/OFDMA- 1.2.3.2.1 传统窄带通信
LTE技术作为现代移动通信的重要基石,提供了更高的数据速率、灵活带宽部署,以及智能天线等关键特性。这部分的教材通过全面分析物理层特性及其对架构和流程的影响,为读者理解4G技术提供了系统支持。
Access
0
2024-10-25
Shandong University of Science and Technology Embedded Systems Exam Guide
Embedded systems are a crucial area in computer science and engineering, focusing on integrating microprocessor technology into specific devices or systems to achieve dedicated functions. The embedded exam materials from the Computer Science and Engineering School of Shandong University of Science and Technology are essential for students mastering this field. These materials cover curated key points by faculty, aiming to help students deeply understand and master the principles, design, and applications of embedded systems.
Embedded systems are characterized by customization and specificity. Typically, they are applied in control, monitoring, or interactive applications such as automotive electronics, medical devices, home appliances, industrial automation, and mobile communication devices.
To understand embedded systems, students must first grasp processor architecture concepts, including microcontrollers (MCUs) and digital signal processors (DSPs), their instruction sets, memory structures, and peripheral interfaces. The software component covers the selection of operating systems (OS), such as real-time operating systems (RTOS) like FreeRTOS and VxWorks, or lightweight embedded Linux distributions. Understanding OS mechanisms, including task scheduling, interrupt handling, and memory management, is crucial for developing efficient, reliable embedded applications.
Programming in C/C++ is common in embedded development, requiring platform-specific coding skills. On the hardware side, embedded engineers need skills in circuit design and system integration, encompassing power management, signal processing, and I/O interface (like GPIO, UART, SPI, I2C) design and debugging. Additionally, optimizing power consumption and designing for reliability are essential aspects.
In terms of exams, students may engage in case analysis to deepen their understanding of embedded applications, such as designing a basic embedded control system or working on IoT projects. Exams may include theory questions asking students to explain embedded system components and workflows, and programming tasks requiring code to control specific hardware devices. Hands-on experiments and projects, like setting up and debugging embedded boards to accomplish particular tasks, are also crucial in assessing students’ skills.
Key Review Points:1. Basics of embedded processors: architecture, instruction set, memory hierarchy.2. OS concepts and applications in embedded systems.3. Embedded programming: C/C++ features, platform-specific coding techniques.4. Hardware interfaces and communication protocols.5. Power management, power optimization, and reliability design.6. Practical application: designing and implementing simple embedded projects.
Through focused learning and practical experience, students can build a comprehensive understanding of embedded systems, laying a solid foundation for future careers in this field. The embedded exam materials at Shandong University of Science and Technology provide a valuable learning path for students.
MySQL
0
2024-11-05
Parallel_Computing_University_of_Science_and_Technology_China_Lecture_Slides
并行计算 (中科大讲义) 提供了一系列关于 并行计算 的关键概念、模型与实现策略。本讲义从并行计算的基本原理开始,深入探讨了如何利用 多核处理器 实现高效计算。包括数据并行、任务并行等模型,并展示了 并行算法 的设计原则与优化方法。此外,讲义中还详细阐述了常用的并行计算工具、编程模型(如 MPI、OpenMP)以及 性能评估 的方法,为学习者提供了全面的并行计算知识框架。
算法与数据结构
0
2024-10-30
Web_Data_Mining_Based_Personalization_Technology_Research.pdf
站点个性化技术的必要性:随着互联网用户数量的剧增,Web站点面临用户需求多样化的问题。传统的Web系统为所有用户提供相同的服务,无法满足用户个性化的需求。因此,提供个性化服务成为Web站点发展的重要趋势。个性化服务可以通过减少用户寻找信息的时间,提高浏览效率,从而增强用户体验。
个性化技术的基本思路:个性化技术包括收集用户的访问信息、分析这些信息,并根据分析结果向访问者提供合适的信息。其核心在于构建用户的特征模型,并将信息主动推送给符合特征的用户。这包括寻找与用户特征相匹配的信息,或者在用户群体中推荐感兴趣的信息。
常用个性化技术的局限性:过去在个性化服务领域中,协同过滤技术被广泛运用,但该技术存在依赖用户提供的主观评价信息、处理大规模数据困难、评价信息可能过时、使用不便等缺点。随着应用环境的变化,协同过滤技术的缺点逐渐凸显。
Web数据挖掘技术在个性化推荐中的优势:将Web数据挖掘技术应用于个性化推荐领域能够解决协同过滤技术存在的问题。Web数据挖掘技术不依赖用户主动提供的评价信息,甚至不需要用户的注册信息,且能够处理大规模数据量。大数据环境是Web数据挖掘技术的优势所在,它有望实现动态的个性化推荐系统,为用户提供更为准确和高效的服务。
基于Web数据挖掘的站点个性化模型:提出一种基于Web数据挖掘的个性化站点模型,该模型的关键技术包括目标样本的特征提取、用户访问模式的分析、个性化推荐数据的生成等。这些技术的实现是个性化推荐系统动态组装和个性化站点动态呈现的基础。
目标样本的特征提取技术:使用向量空间模型(VSM)来表示目标信息,通过特征词条及其权值来评价未知文本与目标样本的相关程度。特征提取的关键在于选择能够体现目标内容且能区分其他文档的特征项集。词条权重的计算考虑了词条在文档中的出现频率和文档出现的频率,以确保能够准确地反映目标信息。
Web数据挖掘技术的其他关键应用:Web数据挖掘技术不仅应用于个性化推荐系统,还可以用于搜索引擎、信息获取等领域。在搜索引擎中,Web数据挖掘有助于提高查询结果的准确性和排序的相关性;在信息获取方面,帮助用户从海量信息中快速找到所需的资源。
个性化推荐系统的实际应用:个性化推荐系统在电子商务等动态网站中得到了广泛的应用。它通过分析用户历史行为数据,为用户提供量身定制的商品推荐,提升了用户的购买体验,并有效提高了网站的转化率。
数据挖掘
0
2024-11-05
Security Analysis-Analog Circuit Design Handbook by Linear Technology(Volume 2,English Edition)
3.1 Efficiency Analysis
In traditional models and methods, the time taken for an alternative term to be approved as a standard term can be described by the following equation (1):
T = ∫₀ᵗ [n₁ * f(t) + n₂ * f(t)] dt (1)
Here, T represents the time for a proposed term to become a standard term. In traditional models, users submit proposals for alternative terms to be standardized, and each proposal undergoes manual review (where feedback is provided once the proposal is reviewed and approved). The feedback time mainly depends on the work hours of the reviewing personnel. Two scenarios are considered:
Scenario 1 (Short processing time): The reviewer immediately checks the proposal. In this case, the review time is t₁, and the number of terms reviewed is n₁.
Scenario 2 (Longer processing time): The reviewer does not immediately check the proposal. In this case, the number of terms reviewed is n₂, and the review time follows an exponential distribution, with the probability density function of review time, f(t), being:
f(t) = (0.08) * e^(-0.08t)
This model extends to the alternative terms, and the time taken for a term to become standardized is described by the following equation (2):
T = (n₃ * t₃) + (n₄ * t₄) (2)
Here, T is the time for a proposed term to become standardized, with n₃ representing the number of valid terms that are stored in the blockchain, and n₄ representing invalid terms. The blockchain model allows registered users to submit alternative terms via an Excel file and validate these terms using smart contracts.
For this process, the validation and blockchain writing time largely depend on the smart contract execution time and blockchain transaction speed. Once terms are submitted, they are validated against the smart contract.
Based on the feedback, terms are categorized into those that can be stored in the blockchain (valid terms) and those that cannot (invalid, synonymous, or defective terms), with counts n₃ and n₄ respectively.
The Ethereum blockchain is used for the validation and writing process. Assuming the average time for writing is t₄, and considering the Ethereum throughput of tx transactions per second, the proposed model's time can be summarized by the equation above.
In both the traditional model and the blockchain model, the terms n₁, n₂, n₃, n₄ account for 50% of the total terms processed.
算法与数据结构
0
2024-11-07