样本估计

当前话题为您枚举了最新的样本估计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

卡尔曼,h∞及非线性滤波的样本联合密度函数估计
样本联合密度函数为∑∑ == −− − = ∏∏ m i i n i i ii yx mny m i x n i mn yyxxp 1 2 1 1 21 eee),;,,,,,( 21 1 2 1 12111 λλλλλλLL ,似然函数∑∑ = == −− m i i n i i yx mnL 1 2 1 1 e),( 2121 λλλλ , ∑∑ == −−+= m i j n i i yxmnL 1 2 1 12121 lnln),(ln λλλ ,令⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ =−= ∂ ∂ ∑ ∑ = = .0 ln ;0 ln 122 111 m i i n i i y nL x n
样本代码介绍
SurveyData.csv 中含有有关华盛顿特区国家广场的纪念碑和博物馆的独特数据,而 Bingaman_Example_Code.Rmd 则演示了如何使用这些数据进行统计分析。
方差定义(样本)
方差S²(样本)的定义为:
matlab开发-生成样本音频
matlab开发-生成样本音频。利用随机组合一系列已知的测试数据来生成测试样本。
参数估计
正态分布参数估计命令:[muhat, sigmahat, muci, sigmaci] = normfit(X, alpha) (默认alpha为0.05)其中:- muhat:均值点估计- sigmahat:标准差点估计- muci:均值区间估计- sigmaci:标准差区间估计
稳健估计度量
利用 MATLAB 实施测量程序,通过调整权重的大小实现稳健估计。
列值分区样本数据
列值分区样本数据用于对大数据集进行优化,以提高查询性能。
点估计的局限性与区间估计的意义
从样本数据中得到的点估计值,虽然是总体参数的最佳猜测,但无法确定其与真实值之间的接近程度。例如,一项研究发现工作培训使小时工资提高了6.4%,但仅凭这一结果,我们无法得知若全体工人都参与培训,其影响是否会与之相符。由于总体参数未知,我们难以判断特定估计值的准确性。因此,我们需要借助概率陈述来构建区间估计,以更好地理解估计值的不确定性。
贝叶斯估计示例状态估计问题的matlab实现
我们在这个示例中使用了两个传感器对状态(x)进行了测量。传感器1给出的测量值为x1=3,传感器2给出的测量值为x2=5。传感器1的噪声是零均值高斯噪声,方差为1;传感器2的噪声是零均值高斯噪声,方差为0.25。我们通过贝叶斯估计求解x及其方差的MMSE估计。根据附加的代码,我们得到状态x的期望值为4.6,方差为0.2。这个结果可能与卡尔曼滤波器的估计有关。
最大似然估计
估计理论导论及其在谱分析中的应用。这是一个包含实验数据验证的MATLAB程序。参考书籍:《数字谱分析》,作者弗朗西斯·卡斯塔尼耶编辑。