网络结构扰动
当前话题为您枚举了最新的 网络结构扰动。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
RBF 神经网络网络结构
输入层:感知单元连接网络和环境隐含层:非线性变换,输入空间到隐层空间输出层:线性,响应训练数据
数据挖掘
10
2024-04-30
基于网络结构扰动和拓扑相似度的动态社区检测Matlab代码影响与应用
介绍了基于结构扰动理论的ESPRA算法,该算法通过测量动态网络节点间的相似性,结合基于密度的聚类和进化聚类技术,实现了动态社区结构的检测。作者王鹏、高林和马新详细阐述了该算法在计算机应用领域的具体实现及其理论基础。ESPRA算法的Matlab 2015b版本代码(ESPRA.m)提供了核心功能的实现。
Matlab
0
2024-08-15
贝叶斯网络结构学习综述的最新研究
贝叶斯网络作为一种有效的不确定性知识表达和推理工具,在数据挖掘等领域广泛应用。其结构学习是当前研究的重要焦点之一,经过多年发展,涌现出多种成熟的结构学习算法。针对完备数据,包括基于依赖统计分析、评分搜索和混合搜索方法的分析;对于不完备数据,提出了适用的结构学习框架。综述了贝叶斯网络结构学习的研究进展,并展望了未来的研究方向。
数据挖掘
2
2024-07-17
【智能化拓扑】基于粒子群算法改进网络结构及Matlab代码附件
涵盖智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划和无人机等多个领域的Matlab仿真。这些技术在优化网络拓扑结构中具有显著的应用潜力。
Matlab
0
2024-09-23
基于改进的粒子群优化算法应用于贝叶斯网络结构学习(2014年)
贝叶斯网络结构学习是数据挖掘和知识发现领域中的重要技术之一。在传统二值粒子群优化算法的基础上,本研究引入了互信息限制粒子群算法,以缩小搜索空间并优化进化模型,提升了算法的收敛速度和全局寻优能力。通过与传统算法的对比实验,使用ASIA网络作为仿真模型验证,结果显示改进算法在较少迭代次数下达到更优解,同时未显著增加算法复杂度。
数据挖掘
0
2024-10-20
神经网络拓扑结构
神经网络训练前,需设计拓扑结构,包括隐层神经元数量及其初始参数。隐层神经元越多,逼近越精确,但不宜过多,否则训练时间长、容错能力下降。如训练后准确性不达标,需重新设计拓扑或修改初始参数。
数据挖掘
2
2024-05-26
卫星轨道建模:特殊扰动方法
轨道建模通过数学模型来模拟大质量物体在引力作用下绕行另一个大质量物体时的运动轨迹。除引力外,其他次要影响因素,例如来自其他天体的引力、大气阻力、太阳辐射压力或推进系统推力,也会被纳入模型中。 由于需要对大尺度轨道上的微小扰动进行建模,直接建模可能会超出机器精度限制。因此,通常采用扰动方法来提高建模精度。 轨道模型通常利用特殊的扰动方法在时间和空间上进行传播。首先将轨道建模为开普勒轨道,然后在模型中添加扰动项,以解释各种影响轨迹的扰动因素。特殊扰动方法适用于任何天体物理问题,因为它不受限于小扰动情况。这种方法是机器生成高精度行星星历表的基础,例如美国宇航局喷气推进实验室发展星历表。 本项目使用以下积分器和力模型来模拟卫星的扰动运动: * 积分器: 带步长控制的可变阶Radau IIA积分器 * 力模型: 地球重力场 (GGM03S 模型)
Matlab
7
2024-05-19
基于主成分分析和扰动BP神经网络的高维数据分类
为了提升高维数据的神经网络分类效果,本研究提出了一种结合降维和分类的策略。首先,利用主成分分析 (PCA) 对原始高维数据进行降维处理,降低数据维度和复杂度。然后,针对传统BP算法的局限性,提出了一种改进的扰动BP学习方法,该方法分两步更新网络权值,以增强网络的学习能力和泛化能力。最后,通过MATLAB仿真实验,对该降维分类算法的分类精度和误差收敛速度进行了评估。结果表明,相比于传统的BP网络,先降维再采用扰动BP网络进行高维数据分类能够显著提高分类精度,并有效加快训练速度。
算法与数据结构
4
2024-05-23
MPPT扰动和观察(P&O)法
利用P&O法,通过扰动太阳能电池阵列的工作点,测量输出功率变化,从而跟踪最大功率点,获取最大输出功率。
具体算法流程:1. 初始化扰动步长和参考功率2. 扰动工作点并测量输出功率3. 比较新旧功率并调整扰动方向4. 重复步骤2-3,直到达到最大功率点
该方法简单易行,但存在功率振荡和跟踪速度慢的缺点。
Matlab
4
2024-05-15
神经网络拓扑结构设计
神经网络的拓扑结构设计是训练前的关键步骤,主要包括确定隐层神经元数量、初始权值和阈值(偏差)。理论上,隐层神经元越多,逼近效果越好。但实际应用中,过多的隐层神经元会导致训练时间延长,网络容错能力下降。因此,需要权衡逼近精度和训练效率。如果训练后的神经网络精度不理想,则需要重新设计拓扑结构或调整初始权值和阈值。
数据挖掘
5
2024-05-20