危险性预测

当前话题为您枚举了最新的 危险性预测。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于模式识别技术的煤与瓦斯突出危险性概率预测
通过对活动构造、最大主应力、瓦斯压力和瓦斯含量等关键因素进行统计分析,建立了煤与瓦斯突出预测的模式识别准则和模型。利用模式识别方法,实现了煤层突出危险性的分单元概率预测,并据此划分出突出危险区、威胁区和安全区。这种方法有效克服了单一指标预测结果的不确定性,实现了多指标定量化预测,从而提高了预测结果的可靠性。
远距离输油管道泄漏引发池火的危险性分析
摘要:基于国内外研究的基础并结合试验统计分析,并建立和改进陆上长输石油管道泄漏池火灾害定量分析模型,对石油管道泄漏形成的池火火灾的一些基本属性,如危害,危害强度以及危害机理进行研究,为陆上长输石油管道风险评估,风险管理,管道维护以及灾害发生后的危害后果评估提供方法支持。
压缩域显著性预测
北京航空航天大学于 2017 年在 TIP2017 上发表的论文《学习使用 HEVC 特征检测视频显著性》开源代码。通过对眼动跟踪数据库的分析,提出了基于 HEVC 特征的视频显著性模型,包括分割深度、比特分配和运动矢量特征。
大数据的承诺与危险
本报告是从第十八届阿斯彭学院信息技术圆桌会议的知情观察者角度撰写的。除非特别注明归属于某个人,本报告中的任何评论或想法都不应被视为代表会议任何具体参与者的观点或得到其认可。
基于MATLAB的ECOTOOL季节性预测代码
ECOTOOL工具箱提供用于时间序列分析和预测的例程,包含探索性、描述性和诊断性统计工具。该工具箱集成了自动识别、估计和离群值检测程序,可用于多季节ARIMA模型、传递函数、指数平滑等模型。它提供深入的文档和演示,引导用户完成建模过程。
电力负荷预测综述及其重要性
电力负荷预测综述####一、绪论##### 1.1电力负荷预测研究意义电力负荷预测对电力系统规划和运营管理至关重要。它通过预测未来电力需求,为发电、输电和电能分配决策提供依据。精确的负荷预测可提高系统效率,确保电网稳定性和可靠性,优化资源利用,降低能源浪费和发电成本。此外,良好的预测也有助于推动电力系统的可持续发展,促进国民经济整体进步。 ##### 1.2国内外研究现状电力负荷预测在国内外历史悠久且不断取得新进展。国外已应用许多先进方法,而中国近年来也有显著进步,形成较为完整的预测体系。随着信息技术的快速发展,如人工智能、大数据分析等新技术的应用,电力负荷预测面临更多发展机遇。研究者正致力于开发高效、准确的模型,提升预测精度,更好地服务实际应用。 ####二、电力负荷预测##### 2.1研究背景近年来,全球经济复苏,国际经济形势向好,为中国电力行业带来机遇。尤其在高峰期,准确预测电力负荷至关重要,以平衡供需关系、确保电力系统安全稳定运行。 ##### 2.2负荷构成及特点电力负荷包括工业、商业、居民等多种类型,具有随机性、周期性和不确定性等特点。 ##### 2.3一般步骤电力负荷预测通常包括数据收集、预处理、特征提取和模型选择与训练等步骤。
HMDA贷款预测解析贷款决策的公正性方法
居所抵押数据倾向提案完整报告。这个项目是统计数据挖掘的一部分,通过以上链接使用清洁数据的说明克隆此存储库,导航至NewData目录。如果需要重新培训,请运行main.py文件。输出文件可用,模型已保存。运行app.py文件本地托管Dash应用以展示数据。
Matlab开发-布茨特拉普生存概率和危险率
Matlab开发了一个简单的脚本,可从CDS中引导生存概率和危险率。
Matlab危险区域预警系统仿真与GUI设计
这是一个为期两周的项目,展示了功能完备的危险区域预警系统,通过Matlab仿真实现,并设计了用户友好的GUI界面。该项目非常适合初学者学习和使用,可用于课程设计、大型作业和毕业设计等。此外,该项目还具备二次开发的潜力,为更高级的功能拓展提供了可能。
C5级切割驱动器预测性数据分析
项目“C5级切割驱动器预测性数据分析”的标题暗示了对C5级别切割工具在工作过程中磨损情况的研究和分析。这项分析强调了数据驱动的预测性分析,通过收集和分析切割工具的磨损数据,以进行性能预测和维护决策。该项目涉及到切割技术、磨损机制、数据驱动、预测性维护和数据分析等关键知识点。