距离变换

当前话题为您枚举了最新的 距离变换。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

广义距离变换MATLAB实现距离采样函数算法
这是P. Felzenszwalb和D. Huttenlocher的论文中提出的距离采样函数的广义距离变换算法的简单MATLAB实现。函数DT()通过为每个维度调用DT1()来计算二维图像的距离变换。该方法可以轻松扩展到更高维度。由于inf值的处理存在问题,因此对于图像中以“无”抛物线为中心的点,应该给它们一个较大的数值(如1e10)。此外,算法被修改为使第二个参数返回输入的功率图,该图展示了每个点到其最近的点的距离。若所有输入点具有相同的值,函数将简化为计算标准的距离变换和Voronoi图。
使用Hausdorff距离进行图像模板匹配的变换(MATLAB)
通过利用Hausdorff距离进行的图像模板匹配变换在MATLAB中实现。该方法允许精确比较图像之间的形状和结构,提高了匹配的准确性和效率。
双向局部距离的Matlab函数点云距离计算工具
这个Matlab函数用于计算两组点云之间的双向局部距离(BLD)。BLD是Hausdorff距离的一种扩展,提供了参考点云中每个点到测试点云的距离。该函数由Hak Soo Kim等人在医学物理学领域的研究中定义,适用于任意维度的点云。使用方法:输入参考点云和测试点云,函数将输出参考点云中每个点的局部距离(BLD)。详细信息可参见原论文:https://doi.org/10.1118/1.4754802。
利用飞机距离测量值估计飞机距离、速度和加速度
描述了如何通过距离、径向速度和径向加速度来仿真飞机的运动轨迹。具体步骤包括假设目标的真实运动轨迹,并以50ms间隔生成观测数据,绘制目标的真实和估计运动轨迹,以及预测和更新目标位置、速度和加速度方差。
距离函数 F.m
这是一个函数,用于计算有向加权复杂网络中的最短路径。
等价变换
任意y,如果学生95002选修了y,那么学生x也选修了y。不存在这样的课程y,学生95002选修了y,而学生x没有选。
距离矩阵matlab代码应用实例
在距离矩阵matlab代码的应用实例中,我们可以看到如何有效利用该技术来解决实际问题。
Matlab开发计算环间距离
Matlab开发:计算环间距离。使用Vagner-Fisher算法计算Levenshtein和编辑距离。
数据挖掘实例距离计算应用
在数据挖掘实践中,我们需要计算不同记录之间以及记录与簇之间的距离。例如,给定两条记录p和q,分别包含属性性别、籍贯和年龄。对于簇C1和C2,我们计算记录p和q与这些簇之间的距离。
自伴变换与斜自伴变换
自伴变换与斜自伴变换 除了正交变换,欧氏空间中还有两类重要的规范变换:自伴变换和斜自伴变换。 定义 设 A 是 n 维欧氏空间 V 的线性变换。 如果 A 与它的伴随变换 A∗ 相同,即 A = A∗,则 A 称为自伴变换。 如果 A 满足 A∗ = −A,则 A 称为斜自伴变换。 线性变换 A 是自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = (α, A(β))。 线性变换 A 是斜自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = −(α, A(β))。 自伴变换和斜自伴变换都是规范变换。当然,除了正交变换、自伴变换以及斜自伴变换外,还有其他的规范变换。 自伴变换 定理 n 维欧氏空间 V 的线性变换 A 是自伴变换的充分必要条件是:A 在 V 的标准正交基下的方阵是对称方阵。 证明 设线性变换 A 在 V 的标准正交基 {α₁, α₂, ..., αn} 下的方阵是 A,则 A 的伴随变换 A∗ 在这组基下的方阵是 AT。于是 A∗ = A 等价于 AT = A。∎ 定理表明,如果在 n 维欧氏空间 V 中取定一组标准正交基 {α₁, α₂, ..., αn},V 的自伴变换 A 便和它在这组基下的方阵相对应。这一对应是 V 的所有自伴变换集合到所有 n 阶实对称方阵集合上的一个双射。于是自伴变换即是是对称方阵的一种几何解释。 由于自伴变换是规范变换,因此关于规范变换的结论可以移到自伴变换上。当然,由于自伴变换是特殊类型的规范变换,所以相应的结论也带有某种特殊性。 由实对称方阵的特征值都是实数可知,自伴变换的特征值也都是实数。 定理 设实数 λ₁, λ₂, ..., λn 是 n 维欧氏空间 V 的自伴变换 A 的全部特征值,其中 λ₁ ≥ λ₂ ≥⋯ ≥ λn。则存在 V 的一组标准正交基,使得 A 在这组基下...