Burgers 方程

当前话题为您枚举了最新的 Burgers 方程。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Burgers方程Fortran实现及CFL条件处理
本程序实现了Burgers 方程的 Fortran 求解,加入了CFL 条件,确保程序的稳定性。用户可以随意更改初始值,程序会自动计算相应的lambda 值,从而避免因初始值相差过大而导致的不稳定问题。程序中的主要部分都已添加注释,方便理解和修改。
基于齐次平衡法的(2+1)维Burgers方程精确解及其图像
通过齐次平衡法,获得了(2+1)维Burgers方程的精确解。借助Matlab软件,绘制了该方程精确解的图像。
方程验证工具MATLAB开发的长方程验证器
我曾使用Maple验证方程,Maple的美观打印模式帮助我多年来验证代码并识别错误。即使在使用MATLAB时,我也使用Maple验证方程,这个工具使用MATLAB的Maple内核来验证方程,使您无需安装Maple。虽然代码不复杂,但处理复杂的长方程时非常方便。它以人类可读的数学符号显示函数,让您直观地检查方程。
求解抛物型方程的案例-偏微分方程matlab
考虑在金属板上带有矩形孔的热传导问题,其中板的左侧保持在100°C,右侧通过定常空气流动散热,其他边和孔边界绝缘。初始时板的温度为0°C。边界顶点坐标为(-0.5, -0.8),(-0.5, 0.8),(0.5, 0.8),内边界顶点坐标为(-0.05, -0.4),(-0.05, 0.4),(0.05, -0.4),(0.05, 0.4)。
FTCS热方程利用FTC开发一维热方程的MATLAB应用
利用FTC开发一维热方程的MATLAB应用
Matlab 微分方程求解
借助 Matlab 工具,探索求解微分方程的方法。本教程涵盖解析解和数值解的求解技巧,并提供实例和实验作业,加深理解。
参数方程函数的求导
利用MATLAB 求解由参数方程定义的函数的导数。
微分方程符号解法
使用 dslove() 函数可求解微分方程符号解。其格式为:s=dslove(‘eq1’,‘eq2’,…,‘eqn’,‘cond1’,‘cond2’,…, ‘condn’,‘v’)其中‘cond1’, ‘cond2’,…, ‘condn’,‘v’可选,默认为独立变量 t。
MATLAB求解差分方程
这份PPT详细介绍了MATLAB如何应用于求解差分方程,内容设计精良。
差分方程Matlab应用
离散状态转移模型的应用领域广泛,涉及多种数学工具。以下是对差分方程的简要介绍,下一章将详细探讨马氏链模型的应用。