活性成分

当前话题为您枚举了最新的 活性成分。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于变量筛选的淫羊藿抗骨质疏松活性成分验证
随着优劣比分析的发展,我们评估了淫羊藿不同部位的抑制活性。宝霍苷I和淫羊藿苷的浓度效应曲线显示,60-80%部位的活性优于淫羊藿提取物。此外,宝霍苷I表现出S型作用曲线,与淫羊藿苷的作用方式可能不同。
数据标签主成分分析实验PCA主成分提取
我们目前有一个数据文件‘Country-data.xlsx’,包含10列数据。第1列是国家名称,其余九列X1~X9是数字类型的数据标签。我们需要进行主成分分析,确保累计贡献率达到90%,并输出它们的特征向量和贡献率属性。
主成分分析
该压缩文件包含了有关主成分分析的信息和资源。
主成分/因子分析节点
主成分/因子分析节点对话框中模型页签用于设置主成分/因子分析模型的参数。
独立成分分析综述
该文档概述了独立成分分析 (ICA) 的基础知识,为初学者提供实用指导。
PCA主成分分析指南
本指南全面讲解了主成分分析技术,提供深入解析和实用案例,适合初学者深入理解PCA原理和应用。
数据挖掘系统2.0:性能与灵活性的提升
新一代数据挖掘系统与数据库和数据仓库紧密结合,实现高效数据交互。其卓越的可扩展性使其能够处理海量、复杂和高维数据。此外,通过引入数据挖掘模式和数据挖掘查询语言,系统灵活度得到显著提升。
Python机器学习:主成分分析
《Python机器学习》中第五章深入探讨了主成分分析 (PCA) 的概念和应用。PCA是一种用于提取主要特性的降维技术,在机器学习中广泛应用于数据可视化、特征选择和降噪等任务。
主成分分析的几何诠释
主成分分析是一种通过降维将高维数据投影到低维空间的技术,其中主成分是低维空间中方差最大的方向。它广泛应用于数据可视化、降噪和特征提取等领域。
主成分分析:降维利器
想象一个高斯分布,它的平均值位于 (1, 3),在 (0.878, 0.478) 方向上的标准差为 3,而在正交方向上的标准差为 1。黑色向量表示该分布协方差矩阵的特征向量,其长度与对应特征值的平方根成比例,并移动到以原始分布平均值为原点。 主成分分析 (PCA) 是一种强大的降维技术,广泛应用于多元统计分析。它通过识别并保留对数据方差贡献最大的主成分,在降低数据维度的同时最大程度地保留数据信息。