datasets
当前话题为您枚举了最新的 datasets。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Mining Massive Datasets Overview
Mining of Massive Datasets is based on Stanford Computer Science course CS246: Mining Massive Datasets (and CS345A: Data Mining). The book is designed for undergraduate computer science students with no formal prerequisites. Most chapters include further reading references for deeper exploration. It has been published by Cambridge University Press. You can get a 20% discount using the code MMDS20 at checkout. The book is available for free download from this page, but Cambridge University Press retains copyright, so please obtain permission and acknowledge authorship for any republication. Feedback on the manuscript is welcome.
算法与数据结构
0
2024-10-31
Mining_Massive_Datasets_Algorithms
本书重点介绍了用于解决数据挖掘中关键问题的实用算法,甚至可以在最大的数据集上使用这些算法。
数据挖掘
0
2024-10-31
Key Insights from 'Mining of Massive Datasets'
关于《海量数据挖掘》的关键知识点
一、书籍背景与目标
《海量数据挖掘》由 Anand Rajaraman、Jure Leskovec 和 Jeffrey D. Ullman 编著,最早用于斯坦福大学的“Web Mining”课程,专为高级研究生和高年级本科生提供深度数据挖掘知识。内容集中于处理大规模数据集的算法,涵盖分布式计算、数据流、相似性搜索等技术。
二、书籍主要内容
本书从算法导向的视角切入大数据处理,以Web数据和相关应用为案例,详细讨论了以下关键技术:
1. 分布式文件系统与MapReduce- 分布式文件系统:介绍了如何使用 Hadoop HDFS 等系统来管理大规模数据。- MapReduce:一种数据并行处理框架,通过将任务分解成 Map 和 Reduce 两阶段高效处理数据。
2. 相似性搜索- MinHashing:用于估计集合相似度,适合大规模数据集。- Locality-Sensitive Hashing (LSH):一种近似最近邻搜索技术,在保持精度的同时提升搜索速度。
3. 数据流处理- 数据流处理技术:适用于实时数据的流处理,包括滑动窗口概念。- 算法:如 Count-Min Sketch,为数据流设计的高效算法。
4. 搜索引擎技术- PageRank:Google用于网页重要性评估的核心算法之一。- 链接垃圾检测:识别和过滤操纵搜索引擎的无效链接。- Hubs and Authorities:网页权威性与中心性的评估方法。
5. 频繁项集挖掘- 关联规则:用于发现数据集中频繁的项目组合。- Market-Basket Analysis:一种重要的商业分析方法,用于分析消费者购买行为。
数据挖掘
0
2024-10-26
Spark SQL, DataFrames以及Datasets编程指南.pdf
《Spark官方文档》详细阐述了Spark SQL,DataFrames以及Datasets的编程方法与应用技巧。内容涵盖了基础操作、高级功能、性能优化等方面,帮助读者深入理解和掌握Spark的编程模型与实际应用。
spark
4
2024-07-12
大数据挖掘技术Minning of Massive Datasets.pdf
Minning of Massive Datasets.pdf是一本优秀的资料,涵盖了大规模数据挖掘及其应用mapreduce技术。
数据挖掘
3
2024-07-16