Minning of Massive Datasets.pdf是一本优秀的资料,涵盖了大规模数据挖掘及其应用mapreduce技术。
大数据挖掘技术Minning of Massive Datasets.pdf
相关推荐
大数据挖掘Mining Massive Datasets斯坦福大学教材
大数据挖掘《Mining Massive Datasets》是斯坦福大学的一门经典教材,适合有一定基础的开发者和研究者。这本书深入了如何应对超大规模数据集,是那些无法完全加载到内存的数据。书中的算法和技术挺有深度,但也实用,像是MapReduce和PageRank等技术,都是实际应用中常见的。这本书虽然偏理论,但举的例子还是挺接地气的,涵盖了 Web 挖掘、社交网络等热门领域。如果你对大数据和算法感兴趣,这本书一定不能错过。,书中的核心内容就涵盖了分布式计算、数据流、推荐系统等实用知识,了MapReduce框架如何用在大规模数据集上。重点了相似度搜索技术,包括MinHashing和LSH,这些
数据挖掘
0
2025-06-24
Mining of Massive Datasets第二版数据挖掘
英文原版的《Mining of Massive Datasets》还挺适合前端开发者了解点大数据知识的。尤其是你做数据可视化、需要搞点数据预啥的,翻一翻还挺有启发。讲得比较接地气,虽然是讲大数据算法,但有不少图示和例子,像 MapReduce、PageRank 这些,讲得还算清楚,不会让人看着头疼。你要是搞前后端结合的项目,懂点底层原理,交流也更顺了。几个扩展资源也值得看看,像《大数据挖掘技术》那个 PDF,内容比较实在,另外像Overview文档也适合快速过一遍。建议你边看边记下关键点,比如MinHash、Locality Sensitive Hashing这些在推荐系统里都用得上。对了,有
数据挖掘
0
2025-06-17
Mining_Massive_Datasets_Algorithms
本书重点介绍了用于解决数据挖掘中关键问题的实用算法,甚至可以在最大的数据集上使用这些算法。
数据挖掘
7
2024-10-31
Mining Massive Datasets Overview
Mining of Massive Datasets is based on Stanford Computer Science course CS246: Mining Massive Datasets (and CS345A: Data Mining). The book is designed for undergraduate computer science students with no formal prerequisites. Most chapters include further reading references for deeper exploration. It
算法与数据结构
7
2024-10-31
Massive Data Mining数据挖掘教程
斯坦福教授写的大数据挖掘书,内容不光硬核,讲法也接地气。讲到MapReduce和HDFS时,举了不少实战例子,分布式入门蛮合适的。还有像MinHash、LSH这种搞相似性搜索的算法,解释得也比较易懂,适合你这种边学边用的节奏。
大数据里的实时流,书里专门拿出一章来讲,像什么滑动窗口算法啊、在线算法啊都有提到。做社交数据或者风控的你,肯定会用得上。还有经典的PageRank、链接垃圾检测这些,嗯,搜索相关的项目也挺依赖这些。
像频繁项集挖掘,除了说A-Priori,还给了优化版本的思路,跑大数据集不会卡顿。聚类部分也不含糊,书里提到不少适合高维数据的方案,适合搞推荐系统的同学看看。
还有广告投放
数据挖掘
0
2025-06-13
Key Insights from 'Mining of Massive Datasets'
关于《海量数据挖掘》的关键知识点
一、书籍背景与目标
《海量数据挖掘》由 Anand Rajaraman、Jure Leskovec 和 Jeffrey D. Ullman 编著,最早用于斯坦福大学的“Web Mining”课程,专为高级研究生和高年级本科生提供深度数据挖掘知识。内容集中于处理大规模数据集的算法,涵盖分布式计算、数据流、相似性搜索等技术。
二、书籍主要内容
本书从算法导向的视角切入大数据处理,以Web数据和相关应用为案例,详细讨论了以下关键技术:
1. 分布式文件系统与MapReduce- 分布式文件系统:介绍了如何使用 Hadoop HDFS 等系统来管理大规模数据。- Ma
数据挖掘
6
2024-10-26
大数据时代数据挖掘技术应用
大数据时代的数据挖掘,说白了就是在海量信息里找有用的“干货”。像决策树、神经网络这些算法,已经不是啥新鲜玩意,但用在大数据上,还真挺有看头的。
决策树的思路挺直观的,适合初学者上手。像你要用户购物习惯,用决策树分层筛选,逻辑清晰,还能做成可视化图表,一眼看懂。
再说支持向量机(SVM),适合分类问题,尤其是你想在海量数据中找边界明确的分类。比如垃圾邮件识别,SVM 上场就合适,准确率也不低。
神经网络的可玩性就更多了,尤其是搞深度学习的场景,像图像识别、文本挖掘都少不了它。要注意的是,它对数据质量要求比较高,训练时间也长。
这篇文章不光讲算法,还聊到了实际应用,比如在电商、医疗、金融这类场景里
算法与数据结构
0
2025-06-30
大数据时代数据挖掘技术与应用
大数据时代,搞数据挖掘的资源是真的不少,但整理得清楚、有料又能落地的还挺难得的。《大数据时代的数据挖掘技术与应用.docx》就是那种你一打开就能看到门道的文档,内容覆盖广,实战方向也清晰,适合前端、后端还有算法同学交叉看看思路。
文档里不光讲了数据挖掘的基本概念,还结合了实际案例,比如怎么通过用户行为数据做推荐系统,怎么利用聚类和分类算法优化广告投放,讲得挺接地气,思路也清晰,不是那种只堆理论的类型。
想深入一点?它还贴心附了多周边资料。比如那个机器学习多种神经网络模型 MATLAB 源代码,虽然你用不上 MATLAB,但看看人家模型怎么搭的,迁移下思路也挺有用。
还有那个 大数据与机器学习学
数据挖掘
0
2025-06-25
大数据集挖掘.pdf
这本书是由安纳德·拉贾拉曼和杰夫·乌尔曼多年来在斯坦福大学开设的一门为期一个季度的课程的教材演变而来。这门名为“网络挖掘”的课程CS345A原本是设计为高级研究生课程,但现在也对高年级本科生开放并且颇具吸引力。随着尤尔·莱斯科维奇加入斯坦福大学教职,我们对材料进行了大幅重新组织。他引入了一门新的课程CS224W,专注于网络分析,并且在CS345A中添加了新的内容,该课程已经更名为CS246。三位作者还推出了一门大规模数据挖掘项目课程CS341。本书现在包含了这三门课程中教授的内容。
算法与数据结构
18
2024-07-25