相关熵

当前话题为您枚举了最新的 相关熵。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

ICPMCC 基于最大相关熵准则的迭代最近点算法Matlab源码
这是基于最大相关熵准则的迭代最近点算法(ICPMCC)的Matlab实现源代码。项目提供了ICP算法及其变体的代码,包括使用迭代最近点算法和相关熵的精确二维点集配准,以及基于点对应和相关熵的鲁棒刚性配准算法。此外,还包含了使用点到平面距离和相关熵进行基于激光雷达的精确点集配准的论文。
基于Spark的系统信息熵和条件熵计算
利用Spark计算CMIM、MRMR、MIFS等方法的开源库已经相当成熟。作者在仿照Spark MLlib库的特征选择功能基础上,扩展了支持系统信息熵和条件熵计算的方法。需要具体结果时,可直接调用ml.feature中相应的方法。
MATLAB信息熵计算
MATLAB提供高效便捷的函数,用于计算信息熵,量化数据的不确定性。
熵:定义与应用
熵:定义与应用 熵,也称为信息熵,是对随机变量不确定性的度量。 定义:在概率空间上,随机变量 $I(X)$ 的数学期望被称为该随机变量 $X$ 的平均自信息,也称为信息熵或熵,记为 $H(X)$。 信息熵的概念不仅应用于信息论,也在决策树构建和模型评估中发挥着至关重要的作用。
绘制二进制熵与三进制熵函数图
本节将绘制二进制熵函数曲线,并且包含三进制的熵函数图示。二进制熵函数定义为H(p) = -plog2(p) - (1-p)log2(1-p),而三进制熵函数则为H(p) = -p1log3(p1) - p2log3(p2) - p3*log3(p3)。接下来,我们使用Matlab进行实现。 % 二进制熵函数 p = 0:0.01:1; H_bin = -p.*log2(p) - (1-p).*log2(1-p); H_bin(p==0) = 0; H_bin(p==1) = 0; % 避免计算log(0) % 三进制熵函数 p1 = 0:0.01:1; p2 = 1 - p1; p3 = 0.5; H_tri = -p1.*log3(p1) - p2.*log3(p2) - p3.*log3(p3); H_tri(p1==0 | p2==0) = 0; % 避免计算log(0) % 绘图 figure; subplot(2,1,1); plot(p, H_bin); title('二进制熵函数'); xlabel('p'); ylabel('H(p)'); subplot(2,1,2); plot(p1, H_tri); title('三进制熵函数'); xlabel('p1'); ylabel('H(p1,p2,p3);'); 图中分别展示了二进制熵和三进制熵的变化情况,直观地反映了熵的性质。
改进熵权TOPSIS评价方法
熵值法优化TOPSIS计算公式,提出改进熵权TOPSIS法,结合定性定量因素对电力营销服务进行评价,验证了该方法的实用性。
熵权法与MATLAB实现
熵权法是一种多准则决策方法,通过计算各准则的熵值和权重来进行决策分析。MATLAB提供了便捷的实现工具,可用于快速计算和应用熵权法。这种方法在工程和管理领域得到广泛应用,能有效处理多因素决策问题。
Kozachenko-Leonenko方法的熵估计一维日期熵点估计的MATLAB开发
该脚本利用Kozachenko-Leonenko方法对一维日期数据进行熵的点估计。
Matlab实现的熵权TOPSIS方法
本包含两个文件:运行主文件和熵权TOPSIS函数。运行主文件可从我的个人主页文章中获取详细说明。函数中附有代码注释。我认为熵权TOPSIS是一种相对简单的多准则决策方法。
VBA宏编程计算矩阵区位熵
利用VBA宏编程实现矩阵区位熵的便捷计算,无需安装额外软件。