OSM数据

当前话题为您枚举了最新的OSM数据。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

osm2pgsql导入工具
在Windows环境下,将OSM数据导入Postgres数据库的工具。使用osm2pgsql可以有效地将OpenStreetMap的地理数据导入到Postgres数据库中,并进行空间查询和处理。
2014年5月版OSM北京地图新切片
最新的北京地图切片,包含1-16级。采用TMS格式,可在OpenLayers中使用。全球切片覆盖1-5级,北京地区独有6-16级。数据源自OpenStreetMap城市切片,采用Mapnik风格渲染,精心制作,方便测试。
大数据数据提取
此代码可用于将文件中的数据提取至另一文件中,中间不读取至内存,满足大数据处理需求,适用于负荷曲线大数据提取。
数据架构:数据仓库与数据挖掘
数据仓库和数据挖掘在数据架构中扮演着重要角色。数据仓库负责存储大量历史数据,而数据挖掘则从中提取有价值的信息。
数据挖掘:探索数据宝藏
这份文档深入探讨了大数据挖掘的核心概念,并详细阐述了用于从海量数据中提取有价值信息的算法。
数据准备:数据挖掘指南
这本书教你如何处理数据,从而最大程度地发挥其价值。
大数据与数据挖掘
深入浅出解析大数据与数据挖掘,了解数据分析领域前沿技术。
数据分析数据集
使用 Python pandas 和第三方包演示功能的数据集,包含于《利用 Python 进行数据分析》中。
数据流条目数据库数据字典
数据流条目 编号: F1名称: 材料出入库单来源: 仓管员去处: 事务输入和检验组成: 日期、材料编号、材料名称、事务类型、单价、数量流量: 60份每天说明: 事务类型1—进货2—出库 编号: F2名称: 正确的事务单来源: 事务输入和检验去处: 更新库存组成: 同上流量: -说明: - 编号: F3名称: 库存来源: 更新库存去处: 库存清单文件组成: 材料编号、材料名称、单价、数量流量: 处理与库存双向流动说明: - 编号: F4名称: 缺货信息来源: 更新库存去处: 处理定货组成: 日期、材料编号、材料名称、单价、缺货量流量: 低于库存临界的库存数量(需订货量)说明: -
数据仓库与数据挖掘
数据仓库将数据转化为可供分析的信息,而数据挖掘从这些数据中提取模式和趋势,两者结合可为决策提供支持。