感染风险

当前话题为您枚举了最新的 感染风险。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

研究报告全膝关节置换术后感染风险因素分析
这项研究探讨接受全膝关节置换手术患者的感染风险因素。研究采用前瞻性纵向设计,涵盖了2013年1月至2015年12月间的数据。共有78名患者参与,进行了81次检查,其中包括16名男性和62名女性。三名患者进行了双侧膝关节置换手术。研究结果确认了多个感染预测因素,如年龄、性别、合并症、ASAPS评分、住院时间、预防性抗生素使用和手术时间。数据经Microsoft Excel整理并进行了统计分析,使用了卡方检验、独立性卡方检验和菲舍尔精确检验。研究发现,在年龄超过70岁的男性、住院超过6天、长达2小时的手术时间和ASAPS评分II级的情况下,感染风险显著增加。金黄色葡萄球菌是最常见的感染病原体,占所有感染案例的33.2%。
Shapley 风险分解
给定协方差矩阵和权重向量,函数将返回每个资产的 Shapley 风险分解值。此外,还会计算 Euler 风险分解值以作对比。
matlab开发-研究26种杜氏模拟尿路感染
matlab开发-研究26种杜氏模拟尿路感染。心脏传导阻滞
金融模型风险密度探索
利用 MATLAB 开发的高级金融模型,深入了解期权定价中的风险中性密度。
数据挖掘助力商户风险评分
该系统运用数据挖掘技术,通过对海量数据进行分析,构建商户风险评分模型,帮助金融机构识别和评估商户风险,提升风控效率。
信用风险评分卡研究
使用 SAS 语言从头到尾详细介绍评分卡开发与实施,附带 SAS 宏代码示例。
计算风险价值 (VaR) 的方法
计算风险价值 (VaR) 的方法 本部分探讨几种计算风险价值 (VaR) 的常用方法: 数据可视化与标准化: 在进行 VaR 计算之前,对数据进行可视化分析和标准化处理至关重要。数据可视化帮助识别数据特征和潜在风险,而标准化则确保不同风险因素对 VaR 计算的影响一致。 历史模拟法: 历史模拟法是一种非参数方法,直接利用历史数据模拟未来的收益率分布。通过对历史收益率进行排序,可以得到不同置信水平下的 VaR 值。 基于随机收益率序列的蒙特卡罗风险价值计算: 蒙特卡罗模拟是一种强大的工具,可以模拟各种复杂的风险场景。通过生成大量的随机收益率序列,可以估计投资组合在不同情景下的潜在损失,进而计算 VaR。 基于几何布朗运动的蒙特卡罗模拟: 几何布朗运动是一种随机过程,常用于模拟资产价格的走势。通过假设资产价格服从几何布朗运动,可以利用蒙特卡罗模拟估计 VaR。
MATLAB代码实现铁缺乏时感染营养显性噬菌细菌游戏
这段MATLAB代码描述了在\"铁缺乏时感染:营养显性噬菌细菌游戏\"中提出的生态机制下,基于静态环境和环境反馈的bimatrix复制器动态模型。代码基于Ferrojan Horse Hypothesis进行运行,探讨了主机-病毒相互作用。详细信息见Bonnain等人2016年的相关研究。代码使用MATLAB vR2017a和R v 3.6.0以及igraph v 1.2.4生成,并根据MIT许可证分发。
商务大数据分析的风险
商务大数据分析过程中可能面临的潜在风险及其归属问题,是关键的考量因素。
诺福克市沿海洪灾风险评估代码解析
代码解析:诺福克市沿海洪灾风险评估 本项目包含Ruckert等人研究中使用的分析代码,用于评估弗吉尼亚州诺福克市沿海洪灾风险预测的差异性。代码主要使用R语言编写,部分文件使用Matlab语言提取数据。 研究重点 分析诺福克市公开的沿海洪灾风险预测数据,包括海平面上升和风暴潮。 对比不同预测数据,识别差异来源。 提取并转换数据,确保不同预测数据的可比性。 分析方法 数据获取: 从公开渠道或个人沟通获取代码和数据集。 识别背景条件: 分析预测数据的背景条件、假设和方法,例如测量单位、水位基准、基准年和本地化方法。 数据转换: 将数据转换为统一格式,以便进行比较。 代码结构 项目目录包含复现Ruckert等人研究所需的所有文件。 研究文献 Ruckert, K.L., Srikrishnan, V. & Keller, K. (正在审查). 表征沿海洪水灾害预测的深层不确定性:弗吉尼亚州诺福克市的案例研究。科学报告。 Ruckert, K.L., Srikrishnan, V. & Keller, K. (2018). 表征沿海洪水灾害预测的深层不确定性:弗吉尼亚州诺福克市的案例研究。arXiv 预印本。arXiv:1804.02874.