尺度上推

当前话题为您枚举了最新的 尺度上推。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

多尺度关联规则挖掘的尺度上推算法研究论文
多尺度理论已应用于数据挖掘领域,但多尺度数据挖掘研究尚不充分,缺乏普适性理论与方法。针对这一问题,研究了普适的多尺度数据挖掘理论,并提出了尺度上推关联规则挖掘算法SU-ARMA。首先基于概念分层理论划分数据尺度,定义数据尺度;接着阐明了多尺度数据挖掘的实质和研究核心;最后在多尺度数据理论基础上,利用采样理论和Jaccard相似性系数对频繁项集进行处理,实现了多尺度数据间知识的向上推导。实验结果显示,该算法在人造数据集和H省全员人口真实数据集上具有高覆盖率和精确度,支持度估计误差较低。
Matlab实现单尺度和多尺度Retinex算法程序
这份程序主要涵盖了Matlab中单尺度和多尺度Retinex算法的实现,所有代码均配有详细注释。
航空公司推特评价数据集
该数据集包含推特用户对某航空公司的评论数据,可用于进行情感分析,探索公众对该航空公司的情感倾向。
MATLAB实现L1-PCA外推的PAM方法
这份MATLAB源代码实现了论文中提出的L1-PCA外推的近端交替最大化方法,用于研究其在合成和真实数据集上的线性收敛性能。与标准的PAM方法、惯性PAM (iPAM)及GS-iPAM进行了比较。作者为王鹏、刘会康和Anthony Man-Cho So,提交给《优化学杂志》(SIAM Journal on Optimization)。
基于外推海面高度和温度数据的海洋状态反演代码
MATLAB代码提供了QG方法,用于反演海面密度、海面高度和分层,以获得三维海洋状态。 所需输入数据:- 海面密度(ssd)- 海面高度(ssh)- 垂直坐标(z)- 分层(n2)- 纬度(lat)- 经度(lon)- 是否使用异常数据(useanomaly,默认True) 使用方法:1. 将数据保存为datain.mat文件。2. 在命令行或脚本中,运行python invert.py datain.mat dataout.mat。 输出:反演结果将保存在dataout.mat文件中。
多尺度Retinex图像增强的新方法
基于Petro, AB, Sbert, C., & Morel, JM (2014)的研究,探讨了多尺度Retinex算法在图像增强中的两种不同实现方式。第一种方法通过指数缩小'scalefactor'直至'scalefactor^nscale',加速大图像处理但可能引入光晕伪影。第二种方法则接受不同尺度作为输入,支持非约束缩放。算法使用最大通道作为图像照明的近似值,并计算出两种反射率的百分比。
优化fminsearch函数以解决高尺度平滑问题
这种fminsearch函数的优化针对了单纯形方法在处理高尺度平滑问题时的限制。当函数在较大尺度下平滑而在小尺度下粗糙时(例如,当参数范围为(-10, 10)时存在清晰的全局极值,但在(-0.1, 0.1)放大时存在多个局部极值),传统的fminsearch初始试验可能过于接近,不适合所有情况。优化包括引入DiffMinChange选项以限制收缩,添加两个新的初始化选项(usual_delta和zero_term_delta),以及针对带有两个参数情况的补丁(可能适用于三个参数)。调用示例:options = optimset('Display','iter', '诊断','开', 'TolFun',0.1, 'DiffMinChange',1, ...)
使用最小二乘法生成内插和外推方程分步MATLAB开发
详细介绍使用最小二乘法生成内插和外推方程的过程,包括输入的横纵坐标以及输出方程的次数,这将帮助学生理解平方拟合的方法。
Matlab实现多尺度二维小波变换
wavedec2 函数 可用于执行多尺度二维小波变换。 语法: [C, S] = wavedec2(X, N, 'wname') [C, S] = wavedec2(X, N, Lo_D, Hi_D) 参数: X:输入图像 N:分解层数 'wname':小波名称 Lo_D:低通分解滤波器 Hi_D:高通分解滤波器 返回值: C:小波系数矩阵 S:簿记矩阵,包含分解过程的信息
多尺度一维分解-小波变换Matlab实现
多尺度一维分解命令:wavedec格式:[C, L]=wavedec(X,N,’wname’)[C, L]=wavedec(X,N,Lo_D,Hi_D)