PUC 米纳斯吉拉斯联邦大学

当前话题为您枚举了最新的PUC 米纳斯吉拉斯联邦大学。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

PUC 米纳斯吉拉斯联邦大学计算机科学研究项目:数据挖掘和搜索引擎
本项目提供数据挖掘和搜索引擎相关研究,由 PUC 米纳斯吉拉斯联邦大学计算机科学课程创建。 使用说明:1. 运行 set-charset.bat 在系统环境中添加变量 JAVA_TOOL_OPTIONS2. 运行 scriptBDD/database.sql 创建数据库3. 在 IDE 中导入项目4. 确保连接数据库的数据正确(主文件)5. 运行项目 相关文档可参阅项目中:
吉布斯采样matlab代码-ihmm
iHMM采样库提供学习和采样有限HMM和无限HMM的代码。代码依赖于Tom Minka的lightspeed和fastfit软件包,这些库必须位于Matlab路径上才能使采样算法正常工作。 iHMM多项式输出: TestiHmmGibbsSampler.m:在具有多项式输出的iHMM上运行Gibbs采样器,演示如何使用iHmmSampleGibbs.m。使用命令“ help iHmmSampleGibbs”获取参数信息。 TestiHmmBeamSampler.m:在具有多项式输出的iHMM上运行光束采样器,演示如何使用iHmmSampleBeam.m。使用命令“ help iHmmSampleBeam”获取参数信息。 联合对数似然函数:p(s,y | beta,alpha,gamma,H)。 iHMM正态输出: TestiHmmNormalGibbsSampler.m:在具有正态输出的iHMM上运行Gibbs采样器,演示如何使用iHmmNormalSampleGibbs.m。
matlab吉文斯变换视频.rar
matlab吉文斯变换视频
Java实现的迪杰斯特拉算法
public static HashMap dijkstra(Node from) {\tHashMap distanceMap = new HashMap<>();\tdistanceMap.put(from, 0);\tHashSet selectedNodes = new HashSet<>();\tNode minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);\twhile (minNode != null) {\t\t// 选定最小距离节点 minNode 进行跳转点\t\tint distance = distanceMap.get(minNode);\t\tfor (Edge edge : minNode.edges) {\t\t\tNode toNode = edge.to;\t\t\tif (!distanceMap.containsKey(toNode)) {""
探索图论中的迪杰斯特拉算法
迪杰斯特拉算法,图论中的经典算法之一,为带权有向图的单源最短路径问题提供解决方案。该算法从给定源点出发,逐步确定到达其余各顶点的最短路径。 迪杰斯特拉算法运作机制 迪杰斯特拉算法采用迭代方式,逐步确定从源点到所有其他顶点的最短路径。每次迭代中,算法选取一个尚未处理的顶点,该顶点距离源点的距离最短,然后更新与该顶点相邻顶点的距离。此过程持续进行,直至所有顶点均被处理完毕。 为实现上述过程,算法通常需要借助距离数组记录源点到各个顶点的最短距离,并利用标记数组记录各个顶点是否已被处理。每次迭代中,算法从距离数组中选取距离最小的未处理顶点,然后更新与其相邻顶点的距离。 迪杰斯特拉算法实现步骤 以下是迪杰斯特拉算法的基本实现步骤: 初始化距离数组和标记数组,将源点到自身的距离设为 0,源点到其他顶点的距离设为无穷大。将源点的标记设为已处理,其他顶点的标记设为未处理。 从距离数组中选择距离源点最短的未处理顶点,将其标记为已处理。 遍历所选顶点的邻接顶点,如果存在更短的路径从源点经由所选顶点到达该邻接顶点,则更新该邻接顶点的距离。 重复步骤 2 和步骤 3,直到所有顶点都被标记为已处理。 迪杰斯特拉算法可应用于各种场景,例如网络路由、交通导航和物流规划等,是一种高效且应用广泛的算法。
凯斯西储大学轴承数据集下载
这份数据集来自美国凯斯西储大学,专门用于开发和验证轴承故障诊断算法。
贝叶斯公式与朴素贝叶斯
贝叶斯公式描述了事件在已知条件下发生的概率。朴素贝叶斯是一种机器学习算法,它假设特征在给定类的情况下相互独立。
MATLAB实现布莱克-斯克尔斯期权定价模型
布莱克-斯克尔斯-默顿期权定价模型(Black-Scholes-Merton Option Pricing Model),通过MATLAB编程实现。
贝尔特拉米滤波器非线性滤波器的贝尔特拉米流应用
介绍了贝尔特拉米滤波器,它是一种遵循贝尔特拉米流的非线性滤波器。该滤波器基于JJ费尔南德斯和JM(2010年)的研究,用于实时电子断层扫描的三维特征保留降噪。
中兴迪杰斯特拉算法挑战赛回顾与优化方案
2018 年中兴迪杰斯特拉算法挑战赛受到美国制裁的影响被迫终止,官网也已关闭。该比赛的任务是在给定网格中填充 1000 条链路,每条链路有三种选择,目标是在一分钟内尽可能降低网格的最大链路利用率。 一种优化方案是从第一条链路开始,每次选择使得当前网格最大链路带宽利用率最小的链路,直到填充完所有链路。该方案得到的利用率约为 40。在此基础上,可以采用模拟退火算法进行优化,每次退火改变一条链路的选择,替换为另外两种选择之一。由于每次只改变一条链路,因此只需计算一次网格利用率,大幅减少了计算量,在相同时间内可以进行更多次的退火操作。通过调整模拟退火参数,最终可以将网格最大链路带宽利用率降低到 37.19 左右,在一分钟内逼近了工具测试得到的 37.08 左右的最优解。