中医

当前话题为您枚举了最新的中医。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

中医门诊access数据库
中医门诊数据库在课堂实例练习中应用信息技术课程。
基于关联规则的中医辅助诊断模型构建
海量中医电子病历的普及为数据挖掘提供了丰富的数据资源。利用关联规则算法,可以从这些数据中挖掘出年龄、疾病、症状等因素之间的潜在关联,为中医诊断提供辅助决策支持。
多尺度信息对中医文本关系抽取的研究
本研究探讨了多尺度信息在中医文本关系抽取中的应用,提升抽取准确性和效率。
抑郁症的中医舌、脉象分布特点综述
目的:探讨抑郁症临床中医舌、脉象的分布规律。方法:统计分析近10年抑郁症文献资料,筛选146例样本。结果:舌质淡占58.9%,脉象以沉细为主占45.2%;抑郁症患者舌质淡、苔薄白、脉沉细的分布特点明显。
基于Hadoop云平台的中医数据挖掘系统设计与实现
随着云计算技术的进步,基于Hadoop云平台的中医数据挖掘系统设计与实现已成为当前研究的热点。该系统利用Hadoop技术,实现了对中医数据的高效挖掘与分析,为中医领域的研究和实践提供了重要支持。
基于贝叶斯方法的中医症证分析研究
中医“症-证”分析在中医诊断学和中医证候分析中非常重要。该文以数据挖掘技术为手段对选取的古方进行“症-证”研究,对古方的主治症状进行规范,挖掘“症-证”之间的关系,从而判定方剂的主治证、兼治证。为了挖掘中医“症-证”之间的关系,提出了基于KNN的挖掘算法和基于贝叶斯的挖掘算法。对比实验证明,基于贝叶斯方法正确率达到65.76%,高于KNN的62.50%。
朴素贝叶斯在中医证候分类识别中的数据挖掘应用研究
中医的证候分类及其症状描述错综复杂,准确鉴别病患所属的证候一直是临床医疗的关键挑战。本研究探索了数据挖掘技术中朴素贝叶斯分类方法在中医证候识别中的应用。为了提高分类准确率,结合遗传算法对分类特征进行了优化。研究通过建立数学模型和应用朴素贝叶斯分类方法对中医证候进行了深入分析,并成功应用遗传算法优化特征选择,以提高识别准确性。
SSM634中医养老服务平台设计数据库课程设计
本项目涉及数据库课程设计,重点在于设计一个结合中医养老服务的平台,采用SSM框架及Vue.js进行开发。
基于人工神经网络的中医舌诊八纲辨证知识库建设及应用(2010年)
探讨了中医舌诊与八纲辨证之间的复杂逻辑和模糊性问题,提出了利用人工神经网络(ANN)算法构建中医诊断神经网络知识库的方法。研究基于Microsoft神经网络数据挖掘查看功能的MSSQLServer2005平台,模拟舌像与八纲辨证的非线性映射关系,并能进行预测分析,有效辅助教学实践和中医临床规范化诊断。