K-L图像变换
当前话题为您枚举了最新的K-L图像变换。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
K-L图像转换用于人脸识别的实现
使用Matlab实现了K-L图像变换,用于人脸识别的应用。该方法通过降维和特征提取,有效地识别人脸图像中的关键特征。
Matlab
0
2024-08-19
K-L的面部识别源代码
K-L的面部识别源代码采用MATLAB实现,支持多种图像格式的识别。随着技术的进步,这一源代码在图像识别领域具有广泛的适用性。
Matlab
0
2024-08-31
图像傅里叶变换详解
深入浅出地讲解图像傅里叶变换,并利用 MATLAB 代码进行实例演示。
Matlab
5
2024-04-30
频域图像增强与傅里叶变换逆变换
这段代码使用Matlab进行图像处理,重点介绍了傅里叶正反变换及其频域表示,以及实现理想方形低通滤波器和Butterworth滤波器。编写过程充满挑战,因为长时间未使用Matlab,开始时不免有些混淆,甚至中途不经意间开始写Python!最终幸运地完成了这一任务,也成为全班第一完成者。
Matlab
0
2024-08-17
图像处理教程图像几何变换详解
在图像处理中,图像的几何变换是一个重要的主题。包括图像平移、正变换和逆变换,以及形态学结构元素的创建和应用。这些技术在处理图像时起着至关重要的作用。
Matlab
0
2024-10-01
Enhanced K-Means Clustering with L2Norm Regularization for Improved Feature Discrimination
K-means algorithm has long been a staple in machine learning and data mining fields, primarily for its effectiveness in clustering large-scale datasets. However, traditional K-means clustering doesn't inherently distinguish the varying discriminative power of features in data. To address this, the paper proposes an innovative clustering framework incorporating L2-norm regularization on feature weights, thereby enhancing clustering outcomes. This new approach builds on the Weighted K-means (W-K-means) algorithm by applying L2-norm regularization to feature weights, effectively balancing feature importance.
For numerical datasets, this framework introduces the l2-Wkmeans algorithm, which uses conventional means as cluster centers. For categorical datasets, two variations—l2-NOF (Non-numeric features based on different smoothing modes) and l2-NDM (Non-numeric features based on distance metrics)—are proposed. The essence of these methods lies in their updated clustering objective function and derived update rules for cluster centers, membership matrices, and feature weights.
Extensive experiments demonstrate the superior performance of the proposed algorithms on both numerical and categorical datasets. These methods exhibit advantages such as improved clustering accuracy, robustness to noisy data, and adaptability to high-dimensional data environments. This signifies that incorporating L2-norm regularization for feature weighting substantially enhances the clustering quality of K-means, especially for complex, high-dimensional datasets. Additionally, the study discusses the impact of regularization parameters on clustering performance, offering practical insights for tuning these parameters to optimize clustering results. This guidance allows users to select the appropriate regularization intensity based on task-specific and data-related characteristics.
The research provides a fresh perspective on improving the K-means clustering algorithm by emphasizing feature importance through L2-norm regularization, enhancing both clustering power and generalizability. This method is valuable for large-scale datasets and scenarios that require nuanced feature differentiation, representing a significant step forward in clustering quality and advancing related research fields.
算法与数据结构
0
2024-10-28
图像DCT变换的Matlab实现
本程序利用Matlab强大的数学计算能力,将图像从空间域转换到频率域,完成了DCT变换。
Matlab
2
2024-05-27
优化图像幂律变换方法基于映射技术的图像幂律变换-matlab开发
利用映射技术进行图像幂律变换的优化方法。
Matlab
0
2024-08-05
【图像几何】使用Matlab实现图像的Radon变换源码
图像的Radon变换是一种在图像处理中常用的数学工具,特别适用于医学成像和物体识别领域。利用Matlab编程,可以轻松实现对图像进行Radon变换,进而获取更丰富的图像信息和特征。这种变换技术不仅提升了图像处理的精度和速度,还推动了相关领域的研究和应用。
Matlab
2
2024-07-17
图像处理中的平移变换详解
详细介绍了图像处理中的平移变换,包括所用到的数学公式及其详细解释。
算法与数据结构
2
2024-07-13