海量数据分析

当前话题为您枚举了最新的海量数据分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

海量数据分析利器:Hive 介绍
Hive 是什么? Hive 是一款由 Facebook 开源的数据仓库工具,用于分析海量结构化日志数据。 Hive 的工作原理 Hive 将结构化数据文件映射成数据库中的表,并支持类似 SQL 的查询功能。Hive 本质上是将 HQL(Hive Query Language)转换为 MapReduce 任务。其执行过程如下: 数据仓库通过 SQL 进行统计分析。 Hive 框架将 SQL 操作转换为对应的 MapReduce 模板。 MapReduce 任务运行,生成分析结果。 结果返回给客户端,用户根据业务需求进行解读。
聚集主题技术:BI@Report海量数据分析利器
聚集主题技术:高效应对海量数据分析挑战 BI@Report的聚集主题技术为海量数据分析提供了一种强有力的解决方案。通过减少维度或降低维度粒度,主题表的数据行数得以大幅缩减,例如,一个拥有数千万行的主题表可以精简至几十万行。这个过程被称为聚集,由此生成的主题被称为聚集主题。 在聚集主题上进行分析比在原始主题上分析更为高效。结合其它相关技术,BI@Report能够轻松处理海量数据的快速分析需求。 OLAP引擎:ROLAP数据仓库的强大查询引擎 BI@Report的OLAP引擎负责从ROLAP数据仓库中查询数据,并在查询过程中实现以下功能: 限制用户查询范围: 例如,市级单位用户只能查询自身或其下级的数据。此功能为BI@Report特有,可在多级用户环境中部署,为所有用户提供集中式分析引擎,并自动限制各级用户的查询权限。 识别主题间、主题与维表间链接关系: 多数分析涉及多个主题和维表,OLAP引擎能够识别它们之间的链接关系并执行联合查询。 处理统计方法运算: OLAP引擎可以处理取前期数据、增幅、增减额等统计方法的运算,并针对不同数据库采用最高效的查询方法。此外,OLAP引擎还支持用户自定义统计方法,如标准差、相关系数等。 空值和零值处理: 针对某些数据库中空值和零值处理的特殊情况,OLAP引擎根据用户设置返回期望值,避免异常情况发生。
Hadoop海量数据的存储与分析平台
这本书从理论到实践,由浅入深地介绍了Hadoop作为高性能海量数据处理和分析平台的全方位内容。全书共分为5个部分,包含24章。
CDR数据分析
利用通信CDR数据库进行后台操作和数据分析,便于深入了解通信行为模式和优化网络性能。
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
海量数据挖掘
斯坦福大学 CS246 课程官方教材,探索海量数据集的挖掘技术。
数据分析数据集
使用 Python pandas 和第三方包演示功能的数据集,包含于《利用 Python 进行数据分析》中。
手机销售数据分析
手机销售数据分析 这份 Jupyter Notebook 文件(.ipynb)包含了对手机销售情况的深入分析。通过探索和可视化销售数据,我们可以揭示出有价值的见解,例如: 畅销机型: 识别哪些手机型号最受欢迎,以及它们的销售趋势。 销售渠道: 分析线上和线下等不同销售渠道的表现。 地区差异: 比较不同地区或城市的销售情况,找出潜在的市场机会。 客户画像: 了解购买手机的典型客户群体特征。 销售趋势预测: 利用历史数据预测未来销售趋势,帮助制定销售策略。 使用 Python 和各种数据分析库,我们可以对销售数据进行全面的探索和分析,为业务决策提供数据支持。
Python 数据分析概述
使用 Python 进行数据分析,了解其优势、功能和应用。
大数据分析代码
Scala 实现的大数据分析代码,包括最高在线人数、登录日志分析、付款情况分析等。