特征学习
当前话题为您枚举了最新的特征学习。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
MATLAB学习资源矩阵特征值和特征向量详解
在MATLAB中,计算矩阵的特征值可以使用函数eig或eigs,特别是eigs适用于稀疏矩阵。这些工具在矩阵分析和数值计算中起着关键作用。
Matlab
0
2024-10-03
案例研究机器学习特征工程数据离散化实践
本案例数据集聚焦于机器学习中的特征工程,特别是数据离散化过程。通过将连续数值型数据转化为离散的类别,如年龄、消费频率等,不仅降低了数据复杂性,还提升了模型的性能和准确性。离散化方法包括等宽分箱、等频分箱和基于规则的分箱,如四分位数等,这些技术在处理会员数据时尤为重要。还介绍了如何利用离散化技术优化特征,以提高机器学习模型在用户分类和推荐系统中的应用效果。
数据挖掘
0
2024-08-15
Matlabsvr代码香草时间池的无监督特征学习
Vanilla Temporal Pooling是由中国哈尔滨工业大学语音实验室的Jiqing Han和Shiwen Deng开发的一种音频信号无监督时序特征学习方法。该方法利用非线性支持向量回归(SVR)直接连接BoAW直方图序列与时间索引,有效地捕获任意持续时间的音频信号时间动态模型。此外,为了提升特征表示的信号重构能力,我们还嵌入了稀疏编码方法于传统的BoAW框架中。如果您对我们的研究感兴趣,请引用:@article{zhang:2018:temporal pooling, title={Unsupervised Temporal Feature Learning Based on Sparse Coding Embedded BoAW}, author={Liwen Zhang, Jiqing Han and Shiwen Deng}, conference={Interspeech}, year={2018}.
Matlab
0
2024-08-18
机器学习中的特征无量纲化操作指南
在进行特征选择之前,一般会先进行数据无量纲化处理,这样,表征不同属性(单位不同)的各特征之间才有可比性。例如,2cm和0.2kg如何直接比较?无量纲化处理的方法很多,选择不同方法会对机器学习模型产生不同的影响。常用方法包括归一化(Normalization)等。
示例代码:
from sklearn.datasets import load_iris
# 导入IRIS数据集
iris = load_iris()
from sklearn.preprocessing import StandardScaler
# 标准化,返回值为标准化后的数据
scaled_data = StandardScaler().fit_transform(iris.data)
常用的无量纲化方法
归一化(Normalization):将特征值缩放到指定范围(如0到1),适用于特征分布差异较大的情况。
标准化(Standardization):基于均值和标准差对数据进行缩放,使数据满足标准正态分布,适用于有异常值的场景。
MinMax Scaling:将数据缩放到指定区间(如0到1),对数据分布要求较少。
不同的无量纲化方法适用于不同的场景,合理选择可以提升模型表现。
数据挖掘
0
2024-11-07
MATLAB学习求逆矩阵、特征向量和特征值、行列式、秩和转置
MATLAB入门学习内容涵盖了如何使用MATLAB计算矩阵的逆、求解特征向量和特征值、计算行列式的值、确定矩阵的秩以及执行矩阵的转置操作。
Matlab
0
2024-08-10
人脸图像特征提取Matlab代码-机器学习实习项目
您好,我叫Abhishek Kakati,目前就读于Guwahati GIMT的一年级CSE本科生。我参加了Cosmic Skills的暑期机器学习实习课程。在项目完成后,我遇到了将代码文件转换为.rar格式的问题,因此我创建了这个存储库,并在邮件中分享了项目的连续链接。我的项目包括字符识别、人脸识别、推荐系统和物种识别。字符识别项目的目标是开发一个工具,能够从手写或打印文档的图像中提取字符(字母、数字、符号),用于数据输入和记录。项目基于机器学习,使用Matlab或Octave作为构建工具。
Matlab
2
2024-08-01
用户特征
本表格详细介绍了用户特征,是用户研究和分析的宝贵资源。
统计分析
3
2024-05-15
基于多模态神经网络的复杂大数据特征学习
面向复杂大数据的特征学习新视角
海量复杂数据的涌现为各行业带来了机遇和挑战,如何从中高效提取有效信息成为关键问题。传统的特征学习方法在处理大数据时面临巨大压力,而多模态神经网络为解决这一难题提供了新思路。
张量:捕捉数据高维特征的利器
通过张量法对大数据进行抽象建模,能够有效捕捉数据在高阶张量空间的分布特征,突破传统方法的局限性。
多模态融合:挖掘数据深层关联
多模态神经网络能够融合不同来源、不同模态的数据信息,例如文本、图像、音频等,从而更全面地理解数据,挖掘数据间的深层关联。
面向未来的智能数据分析
基于多模态神经网络的复杂大数据特征学习方法,为构建更加智能、高效的数据分析系统提供了强有力的支持,将在各个领域发挥越来越重要的作用。
算法与数据结构
5
2024-05-27
Matlab斑马鱼视频特征学习分析CNN的优化方法探讨
探讨了以斑马鱼游泳圈分类为例的两流CNN视频特征学习分析,展示了最新AI解释技术的实用性。通过可视化CNN在斑马鱼运动分类训练中的学习特征,详细说明了技术进步在此领域的应用。文章除了提供源代码和自述文件外,还附带重要的进一步说明。
Matlab
0
2024-09-20
探索无监督学习:聚类、降维与特征提取
无监督学习是一类强大的机器学习方法,其核心在于从无标签数据中学习内在结构和模式。常见的无监督学习技术包括:
聚类分析: 将数据点划分为不同的组,使得组内相似度高,组间相似度低。
主成分分析 (PCA): 一种降维技术,通过线性变换将原始数据映射到低维空间,保留数据的主要特征。
稀疏编码与学习: 通过学习一组基向量,将数据表示为这些基向量的稀疏线性组合,从而实现特征提取和降维。
算法与数据结构
1
2024-05-19