Vanilla Temporal Pooling是由中国哈尔滨工业大学语音实验室的Jiqing Han和Shiwen Deng开发的一种音频信号无监督时序特征学习方法。该方法利用非线性支持向量回归(SVR)直接连接BoAW直方图序列与时间索引,有效地捕获任意持续时间的音频信号时间动态模型。此外,为了提升特征表示的信号重构能力,我们还嵌入了稀疏编码方法于传统的BoAW框架中。如果您对我们的研究感兴趣,请引用:@article{zhang:2018:temporal pooling, title={Unsupervised Temporal Feature Learning Based on Sparse Coding Embedded BoAW}, author={Liwen Zhang, Jiqing Han and Shiwen Deng}, conference={Interspeech}, year={2018}.
Matlabsvr代码香草时间池的无监督特征学习
相关推荐
无监督学习大纲
什么是无监督学习
无监督学习的类型
聚类
降维
异常检测
无监督学习的应用
客户细分
模式识别
欺诈检测
算法与数据结构
3
2024-04-30
探索无监督学习:聚类、降维与特征提取
无监督学习是一类强大的机器学习方法,其核心在于从无标签数据中学习内在结构和模式。常见的无监督学习技术包括:
聚类分析: 将数据点划分为不同的组,使得组内相似度高,组间相似度低。
主成分分析 (PCA): 一种降维技术,通过线性变换将原始数据映射到低维空间,保留数据的主要特征。
稀疏编码与学习: 通过学习一组基向量,将数据表示为这些基向量的稀疏线性组合,从而实现特征提取和降维。
算法与数据结构
1
2024-05-19
Matlab代码改进细节无监督管提取
使用密集轨迹和转导学习,细节改进的Matlab代码介绍了一种无监督试管提取算法,用于从视频中提取动作。该方法已在Matlab R2015a上进行了Linux平台测试,并提供了该算法的Matlab实现。如果您认为此无监督试管提取方法对您的研究有帮助,请考虑引用以下文献:@inproceedings{marian2015unsupervised, title={Unsupervised Tube Extraction Using Transductive Learning and Dense Trajectories}, author={Marian Puscas, Mihai and Sangineto, Enver and Culibrk, Dubravko and Sebe, Nicu}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={1653--1661}, year={2015}. 该算法采用MIT许可证授权。
Matlab
1
2024-07-31
深入理解大数据Spark ML监督与无监督学习实战指南
在本篇文章中,我们将专注于大数据Spark ML机器学习的核心内容,涵盖监督学习和无监督学习的关键方法。主要涉及以下几种算法:
1. 分类算法
分类算法在监督学习中应用广泛,如逻辑回归和决策树,适用于对数据进行类别标记并进行准确预测。
2. 回归算法
回归算法帮助我们在监督学习中构建精确的预测模型,例如线性回归和支持向量机,尤其适用于数值预测。
3. 聚类算法
在无监督学习中,聚类算法用于将数据点分成组,如K-means和层次聚类,适用于数据分组和发现隐藏模式。
4. 推荐算法
推荐算法广泛应用于个性化推荐系统,通过分析用户行为数据生成个性化推荐,如协同过滤算法。
5. 频繁模式挖掘算法
此类算法用于挖掘数据集中频繁出现的模式,比如关联规则挖掘,有助于发现数据的潜在关联性。
该文章将为您详细介绍这些算法在Spark ML中的应用,提供深入的实战案例。
算法与数据结构
0
2024-10-26
Primmatlab代码-无监督图像匹配与目标发现优化
Prim Matlab代码用于无监督图像匹配和目标发现,由Huy V. Vo等人于CVPR 2019提出。入门代码使用Matlab 2017a编写,可能需要修改以适应其他版本。安装步骤:首先执行git clone https://github.com/vohuy93/OSD.git,然后cd OSD。依赖关系:下载使用随机Prim算法生成区域建议的代码,并放入UODOptim/文件夹,执行git clone https://github.com/smanenfr/rp.git,接着运行cd rp; matlab -r "setup"。测试代码主要在VOC_6x2上运行,脚本为scripts/run_UOD.m,在终端中从UODOptim文件夹运行cd scripts; matlab -r "run_OSD"。引文格式:@INPROCEEDINGS{Vo19UOD, title = {Unsuperv
Matlab
0
2024-11-03
假设检验代码 Matlab - 半监督特征选择
Matlab 代码实现了论文《用于半监督特征选择的简单策略》中提出的方法,该论文发表于《机器学习杂志》。
代码功能:
semiIAMB.m:实现了 Semi-IAMB 算法,应用于 Markov Blanket 发现 IAMB (IAMB.m) 的切换过程,用于半监督场景中的假设检验。
semiMIM.m 和 semiJMI.m:实现了 Semi-MIM 和 Semi-JMI 算法,分别应用于特征选择方法 MIM (MIM.m) 和 JMI (JMI.m) 的切换过程,用于在半监督场景中对特征进行排名。
Tutorial_SemiSupervised_FS.m:教程,介绍如何在半监督学习环境中使用建议的特征选择方法。
引用:
如果使用此代码,请引用以下论文:
Sechidis, K., & Brown, G. (2018). Simple strategies for semi-supervised feature selection. Machine Learning, 107, 1277–1298.
Matlab
4
2024-05-25
karateclub无监督学习图形的API导向开源Python框架(CIKM 2020)
空手道俱乐部(Karate Club)是一个无监督学习的扩展库,专注于图形数据。它集成了最先进的方法,可用于节点和图级别的网络嵌入技术,并提供各种重叠和不重叠的社区检测方法。该框架涵盖了广泛的网络科学、数据挖掘、人工智能和机器学习领域,适用于多个会议、研讨会和期刊。新引入的图分类数据集可从相关资源获取。如果空手道俱乐部及其数据集对您的研究有帮助,请考虑引用相关文献。
数据挖掘
2
2024-07-20
快速的Matlab代码IST - FastAlign简单且高效的无监督字对齐工具
FastAlign是一个简单、快速且无监督的Matlab代码IST,用于字对齐。如果您使用此软件,请确保遵循适当的引用要求。源代码可在此存储库中找到。输入格式要求将句子对按照 ||| 分隔,并进行标记化处理。示例包括德语-英语平行语料库的使用。构建FastAlign需要现代C++编译器和构建系统,同时可以优化性能使用OpenMP库。
Matlab
0
2024-09-24
基于VGG16特征和M3C聚类的微观结构无监督分类
本研究利用VGG16卷积神经网络对微观结构图像进行特征提取,并结合M3C聚类算法实现无监督分类。
数据与方法:
本研究使用包含1925张图像的数据集,从中随机选取100张进行分析。 首先,利用预训练的VGG16网络提取图像特征,具体而言,使用第五个卷积层的输出,并进行平均池化以降低特征维度。 接着,使用M3C聚类算法对提取的特征进行聚类分析,确定最佳聚类数量。 最后,利用项目共识值识别高置信度和不明确的数据,用于后续半监督学习框架的训练。
数据共享:
Python、R和Matlab之间的数据共享通过Excel文件实现。
所需软件包:
Python: Keras, Numpy, Xlsxwriter, Xlrd, Sklearn, Seaborn, Matplotlib, copkmeans
R: M3C, ConsensusClusterPlus
Matlab: S4VM
代码使用:
将所有代码文件下载到同一文件夹,并在Python、R和Matlab中设置该文件夹为工作目录。 提供了一个包含预期输出结果的Excel文件,用于验证代码执行结果。
Matlab
5
2024-05-31