由 Attunity 和 Hortonworks 共同提供的 Apache NiFi 初学者指南。
Apache NiFi 入门手册
相关推荐
NiFi 数据采集工具
NiFi 是一款实时离线数据采集工具,架构清晰,具备单点及集群部署能力。其处理器功能丰富,支持多种数据来源和变量表达式。广泛应用于数据集成、ETL 处理等场景。
Hadoop
3
2024-05-01
Apache Doris 入门指南
Apache Doris是一款高速、实时的分析型数据库,响应时间仅为亚秒级,可满足报表分析、即时查询、数仓构建等场景。它支持高并发点查询和高吞吐复杂分析,可用于构建用户行为分析、日志检索分析、订单分析等应用。
算法与数据结构
2
2024-05-21
Apache 2.2 中文手册
Apache 2.2 版本特性、升级指南、许可证、编译与安装、运行时配置、指令速查、模块、过滤器、处理器、多路处理模块、用户指南、配置、内容缓冲、内容协商、动态共享对象、日志文件、映射、性能调整、安全提示、SSL 加密、CGI 执行、URL 重写、虚拟主机、认证、CGI、.htaccess、SSI、用户目录、平台说明、常见问题解答、开发者文档
Access
4
2024-05-16
Apache Spark学习手册
Apache Spark是Apache软件基金会下的一款开源大数据处理框架,以其高效、灵活和易用性著称。Spark学习手册的目的是帮助用户深入理解Spark的核心概念、工作原理以及在实际项目中应用Spark进行数据处理的方法。以下是每个文件内容的详细解读: 1. 01Spark生态和安装部署.pdf Spark生态系统包括多个组件,如Spark Core、Spark SQL、Spark Streaming、MLlib(机器学习库)和GraphX(图处理)。件介绍了在各种环境(例如本地、Hadoop YARN、Mesos或Standalone集群)中安装和配置Spark的方法,还包括配置参数调整、资源管理和监控工具的使用。 2. 02Spark编程模型和解析.pdf Spark的核心编程模型基于RDD(弹性分布式数据集),这是一种不可变、分区的数据集合,支持并行操作。文件将详细讲解RDD的创建、转换和行动操作,以及如何使用DataFrame和Dataset API,这些API提供了更高级别的抽象和SQL支持。此外,还将讨论Spark的容错机制和数据持久化策略。 3. 03Spark运行架构和解析.pdf Spark的架构由Driver Program、Executor和Cluster Manager三部分组成。本部分内容将详细解释Spark的工作流程,包括Job、Stage和Task的划分,以及通过DAG(有向无环图)调度任务的方法。同时,还将涵盖Spark Shuffle过程和内存管理机制。 4. 04SparkSQL原理和实践.pdf Spark SQL允许用户使用SQL与DataFrame和Dataset进行交互,它集成了Hive metastore,可以兼容Hive的查询语言。本部分将探讨如何创建DataFrame、使用DataFrame API以及执行SQL查询。还将讲解DataFrame的优化,包括Catalyst优化器和代码生成。 5. 05Spark Streaming原理和实践.pdf Spark Streaming提供了实时流处理能力,它将数据流划分为微批次进行处理。文件将讲解DStream(离散化流)的概念,如何创建和操作DStream,以及如何实现窗口操作和状态管理。还将涉及Spark Streaming与其他流处理框架的集成。
spark
0
2024-10-13
Apache Kafka 快速入门指南
Apache Kafka 快速入门指南-Packt Publishing(2018) 是一本关于 Apache Kafka 的电子书,采用 epub 格式。
kafka
5
2024-05-12
Apache Spark大数据入门
这本书对Spark有深入的讲解,同时也包括databricks公司推荐的官方电子书《A-Gentle-Introduction-to-Apache-Spark》。备注:共有9个PDF文件,均为英文版。建议阅读,理解起来并不难!
spark
3
2024-07-12
Apache Spark编程入门指南
Spark编程指南是一本适合初学者的入门手册,涵盖了Apache Spark的核心概念和操作,帮助编程人员快速掌握Spark的使用并理解其生态系统。Apache Spark是一个快速、大规模、通用的计算引擎,提供了丰富的高级API,支持Java、Scala、Python和R等编程语言。Spark的设计目标是支持数据在内存中的处理,以提高数据处理速度,也被称为内存计算。与Hadoop MapReduce相比,Spark可以将作业中间结果保存在内存中,避免昂贵的磁盘I/O操作,大大提升处理效率。Spark编程的核心是围绕RDD(弹性分布式数据集)展开的,RDD是分布式内存的一个抽象概念,提供一个容错的并行操作数据集。在Spark中,所有计算都围绕着RDD执行,RDD可视为Spark的灵魂。RDD具有两个核心操作:转换(Transformations)和行动(Actions)。转换操作创建一个新的RDD,例如map和filter;行动操作则返回结果或将数据写入外部存储系统,例如count和first。Spark还提供了键值对操作,支持更复杂的计算,如MapReduce、连接(Joins)和分组(Groups)。这些操作通常用于处理键值对数据,允许用户轻松实现分布式数据操作。Spark Streaming是Spark的一个扩展,用于处理实时数据流,用户可从Kafka、Flume、Twitter等不同来源接收实时数据,并使用Spark的API处理数据。Spark Streaming引入了一个新的概念DStream(Discretized Stream),表示连续的数据流,可以看作是RDD的序列,并提供用于数据流的转换和行动操作。在使用Spark时,监控和调优性能是重要环节。监控可以了解应用的运行状态和资源使用情况;调优则是在性能不足时,通过分析和修改来提高效率,包括减少任务执行时间、设置合理并行度及使用缓存等策略。SparkSQL是Spark用于结构化数据处理的模块,允许用户使用SQL查询数据,同时提供DataFrame API便于操作半结构化数据。SparkSQL支持Hive、JSON、Parquet等数据格式。
spark
0
2024-11-07
大数据Apache Mahout实战手册
《大数据Apache Mahout实战手册》是一本专注于探索大数据分析与机器学习技术的专业著作,重点介绍了Apache Mahout框架的应用。Mahout作为Apache软件基金会的开源项目之一,致力于提供可扩展且易于使用的机器学习库,用于构建大规模数据挖掘系统。本书详细阐述了如何利用Mahout进行数据挖掘和预测分析,涵盖了数据处理模型、Mahout架构、机器学习算法及其应用实例。此外,书中还介绍了Python在大数据处理中的应用及其在量化交易领域的具体案例,为读者提供全面的实践指导。
算法与数据结构
0
2024-08-08
Apache Spark 2.2.x中文手册
Apache Spark 2.2.x的中文官方参考手册(非API文档)。本教程简要介绍如何使用Spark。首先,我们将通过Spark的交互式shell介绍(Python或Scala) API的基础知识,然后演示如何使用Java、Scala和Python编写Spark应用程序。
spark
0
2024-08-08