提出了一种基于二维短时傅里叶变换的干涉相位图滤波方法。首先,将干涉相位数据转变成指数,利用二维短时傅里叶变换进行处理,设置阀值,并进行二维短时傅里叶逆变换;最后,求取复数相位,获得滤波后干涉相位。试验结果表明,该方法在有效抑制相干斑的同时,还能有效地保持相位的细节信息和条纹的边缘结构,并清除了残余点,有助于提高干涉测量的精度。
数据挖掘中的粗糙集边界处理方法二维短时傅里叶变换滤波研究
相关推荐
基于粗糙集的属性约简在数据挖掘中的研究
粗糙集的属性约简在数据挖掘中挺有用的,尤其是在一些不完全、冗余的数据时。它从数据中提取出最精简的属性集,同时又不会损失分类能力。你可以把它想象成给数据“瘦身”,让它变得更高效。在实际操作中,粗糙集理论通过简化数据的结构,能够提高数据挖掘的精度和速度。嗯,最关键的是,它不需要额外的先验信息,这就让算法更灵活。如果你正在做与数据相关的项目,粗糙集的属性约简可以大大简化你的工作,是在分类问题上,能你更好地去除不必要的特征。
数据挖掘
0
2025-06-11
二维分数傅里叶变换的MATLAB实现
这份MATLAB源代码演示了二维分数傅里叶变换的过程,设计简单易懂,特别适合图像加密应用。
Matlab
14
2024-09-20
Matlab实现短时傅里叶变换的方法
短时傅里叶变换(STFT)是一种与傅里叶变换相关的数学变换,用于分析时变信号在局部区域的频率和相位特征。
Matlab
12
2024-07-31
基于粗糙集的数据挖掘技术探索
基于粗糙集理论的数据挖掘方法正在被广泛研究和应用。这一方法不仅能够处理数据中的不确定性和不完整性,还能发现隐藏在数据背后的有价值信息。研究者们通过改进算法和优化模型,不断提升其在各个领域的应用效果和准确度。未来,随着技术的进步和理论的深入,基于粗糙集的数据挖掘技术有望在更广泛的领域展现其潜力。
数据挖掘
8
2024-08-03
粗糙集与遗传算法结合的数据挖掘方法
粗糙集的属性约简能力,配上遗传算法的全局优化特性,组合在一起用来挖数据,还挺有意思的。这篇 PDF 讲的就是怎么把这两种方法搭一块来搞大规模数据挖掘,结构也挺清楚的,从原理说到怎么应用,尤其对规则提取那块讲得还蛮细。
粗糙集的思路,比较适合那种数据质量不太高的场景,比如缺值多、不确定性强的那种。而且它不用先验知识,直接靠数据本身做判断,干净利落。
再加上遗传算法的那套选择-交叉-变异流程,就能让模型更灵活点,适应性强一点。比如你要从一堆规则里挑出几条“说得过去”的,靠它就行了。
要注意哦,前面几步数据预关键,是离散化和缺失值填补。这些如果没搞好,后面再厉害的算法也没法发力。比如连续属性要先转成
数据挖掘
0
2025-06-24
基于粗糙集的数据挖掘在教学评价中的应用
粗糙集的数据挖掘在教学评价里的应用,思路挺清晰的。数据预、属性约简、规则提取这一套流程,逻辑上还蛮顺的。尤其是用了两种约简算法,一个属性,一个搞属性值,效率不低。
粗糙集的约简算法用起来感觉挺方便,像是用分明矩阵做属性约简那段,代码也不复杂,Matlab实现起来也挺直观。你想去掉冗余、提炼关键因素,这招挺好使。
教学评价数据这种结构化的表格挺适合下手挖掘。你只要把决策表准备好,扔给粗糙集一套算法,基本就能摸清哪些指标是影响效果的“硬通货”。
如果你想深入玩玩约简和规则提取的细节,可以去看看那份粗糙集属性约简课件,讲得还不错;或者这篇基于粗糙集的数据挖掘技术探索,案例挺多。
规则提取这块也有点意
数据挖掘
0
2025-07-03
MATLAB实现二维分数傅里叶变换算法源码
二维离散分数傅里叶变换(2D DFRFT)是一种扩展了传统离散傅里叶变换(DFT)的概念,允许在更广泛的频率域内进行分析,提供了非整数阶的转换角度。这种变换在信号处理和图像分析领域具有广泛应用。MATLAB源程序提供了2D DFRFT的基本实现和在不同环境下的应用,包括噪声环境下的估计算法和应用于SAR图像处理的技术。
算法与数据结构
15
2024-08-30
基于粗糙集的文本分类研究
文本分类里的维度问题,真的是老大难了。高维特征又多又乱,模型跑得慢不说,准确率还不稳定。粗糙集理论就挺能这个问题的,专门干降维这种脏活累活,精度还不掉。文中讲得挺全,从上近似、下近似这些基础概念,到怎么做知识约简,都说得清清楚楚。文本特征一多,像VSM 模型那种传统方法就开始吃力了。你用过支持向量机或KNN的应该懂,一不小心就爆内存。用粗糙集前先做停用词过滤和分词,后面再靠它筛关键特征,效率能提升不少。我觉得这篇 PDF 最实用的地方在后半部分,做了个案例对比实验,直接把传统方法跟粗糙集做的模型效果摆一块,哪种更稳一目了然。你要是项目里正好卡在特征维度上,建议真看看。顺手还能参考下里面推荐的特
数据挖掘
0
2025-07-01
粗糙集理论的学术探索与研究
粗糙集理论是处理不确定、不完整、不一致知识的数学工具,由Z. Pawlak于1982年提出,解决现实世界中的不确定性问题。该理论在数据挖掘、机器学习等领域广泛应用。不可区分关系是其核心概念之一,用于描述对象间的相似性。信息系统(I = (U, A, V, F))定义了论域、属性集合和属性值域之间的关系。上下近似集则描述了集合的不确定边界。
数据挖掘
11
2024-08-29