数据流挖掘作为热门研究领域,涵盖多种数据流类型。本研究借鉴模糊粗糙集和F-粗糙集原理,提出一种针对模糊型数据流的模糊并行约简方法。该方法通过删除冗余属性,利用属性重要性变化探测模糊概念漂移现象。区别于传统方法,该方法基于模糊数据内在特性进行漂移探测,并通过实例验证了其可行性和有效性。