在元启发式搜索算法领域,适应距离平衡(FDB)方法被提出作为一种新的选择策略,具有潜力优化搜索性能和提升效率。FDB通过在探索和开发之间实现平衡,以增强算法的适应性和全局搜索能力。利用这种方法,元启发式搜索算法可以更有效地处理复杂的搜索空间,适用于多种优化问题。
FDB-SOS基于适应距离平衡的智能搜索算法新方法
相关推荐
ADASYN算法提高类别平衡的新方法——MATLAB开发
实现了H. He、Y. Bai等人提出的ADASYN算法,该算法是SMOTE方法的扩展,通过在少数类示例之间进行线性插值来改善类别平衡。相较于SMOTE,ADASYN更加注重在两个类别边界附近创建新示例。提交还包含用于生成标题图的演示脚本。
Matlab
2
2024-07-30
HGS算法实现全局搜索和优化的新方法
近年来,已经发布了一系列基于人口的过度使用方法。尽管它们广受欢迎,但由于操纵了系统的互联网营销、产品捆绑和广告技术,大多数方法具有不确定性和不成熟的性能验证。为了解决这些问题,本研究提出了一种名为“饥饿游戏搜索”(HGS)的通用基于总体的优化技术。该技术结构简单,稳定性特殊且非常实用,更有效地解决约束和非约束问题。HGS算法设计灵感源自动物的饥饿驱动行为选择,以实现更快的收敛和高质量的结果。
Matlab
2
2024-07-17
广度优先搜索算法
广度优先搜索(BFS)是一种用于图或树的数据结构中的算法。它按层的顺序访问节点,即从根节点开始,然后访问与其相邻的所有节点,依次类推,直到所有节点都被访问。广度优先搜索常用于查找最短路径或最短生成树。
算法与数据结构
4
2024-04-30
基于数据挖掘的模块评估新方法
随着软件工程的发展,评估软件产品变得日益重要。传统的主观经验和有限数据集评估方法准确性有限。为解决这一问题,尹云飞等人提出了一种创新的基于数据挖掘的模块评估新方法,采用模糊聚类技术提高评估精确度和有效性。
数据挖掘
0
2024-09-24
基于物理的优化算法瞬态搜索算法(TSO)Matlab开发
该算法灵感源自于开关电路中电容器和电感器的瞬态行为。瞬态搜索算法(TSO)已发表在应用智能期刊:https://link.springer.com/article/10.1007/s10489-020-01727-y
Matlab
0
2024-09-19
基于PSO的多目标搜索算法压缩包
《基于粒子群算法的多目标搜索算法》PSO是一种仿生计算方法,源自对鸟群或鱼群集体行为的观察,其在解决复杂优化问题时展现出强大的能力。本资源提供的“基于粒子群算法的多目标搜索算法”处理具有多个相互冲突的目标函数的问题,这在工程设计、资源分配等领域中非常常见。多目标优化与单目标优化不同,其目标是寻找一组非劣解,而非单一最优解。在多目标问题中,找到这个前沿并从中选择满足特定需求的解决方案是一项挑战。粒子群算法在多目标优化中的应用,通常涉及到将每个粒子视为一个潜在的解,每个解对应于目标空间中的一个点。在压缩包中,主要包含了主程序文件main.m和参数数据文件data.mat,分别用于算法的实现和测试数据的读取。优化过程中,还需要注意避免早熟收敛和陷入局部最优。
算法与数据结构
2
2024-07-17
麻雀搜索算法(SSA)一种创新的集群智能优化技术
受麻雀群体智慧、觅食和反捕食行为的启发,提出了一种新的集群优化方法,即麻雀搜索算法(SSA)。
Matlab
0
2024-09-24
图像增强的新方法方差、PSO与增益适应度的应用
图像增强技术正在不断发展,近年来方差、PSO和增益适应度等新方法被引入。这些技术的结合提升了图像质量和清晰度。
Matlab
0
2024-08-29
挖掘关联规则的新方法
关联规则挖掘在事务数据库中的应用越来越广泛。单维布尔方法提供了可伸缩的算法,用于挖掘各种关联和相关规则。基于限制的关联挖掘和顺序模式挖掘都是当前研究的重点。
算法与数据结构
1
2024-07-22