Logstash 是一款开源的数据收集引擎,具备实时数据传输能力。它能够将来自不同来源的数据进行统一过滤,并根据开发者设定的规范输出到指定目的地。
Logstash:ELK 组件之数据收集引擎
相关推荐
Logstash 6.2.2: 高效日志收集与处理工具
Logstash 6.2.2 是一款开源数据管道工具,支持实时数据采集、转换和传输。它能够从多种数据源获取数据,并通过灵活的过滤和转换规则将数据标准化,最终输出到 Elasticsearch 等目标系统。Logstash 简化了日志数据的处理流程,提升了数据的可读性和分析价值,为系统监控、性能分析和安全审计等提供了有力支持。
kafka
2
2024-06-11
大数据搜索与日志挖掘方案——ELK Stack:Elasticsearch Logstash Kibana(第2版)
大数据搜索与日志挖掘方案——ELK Stack:Elasticsearch Logstash Kibana(第2版).高凯的这本书是PDF格式,书签详细,内容丰富,是非常值得收藏的资料。
spark
2
2024-07-12
Logstash 7.0.0
Logstash 是一款开源的日志收集和管理工具,负责实时采集日志数据。 它与 Elasticsearch 和 Kibana 并称为开源日志界的“三剑客” (ELK)。
kafka
5
2024-05-12
SQLite数据库引擎的32位.NET Framework组件
System.Data.SQLite.dll是SQLite数据库引擎在.NET Framework环境下的一个组件,专为32位操作系统设计。SQLite是一款开源、轻量级的SQL数据库引擎,广泛应用于各种需要快速部署、无需服务器或简化数据库管理的应用场景。其核心特性包括独立性,跨平台支持(包括Windows、Linux、macOS等),事务处理支持ACID,小体积且高性能,符合SQL标准,可用于小型到中型应用。System.Data.SQLite.dll允许.NET开发者通过ADO.NET接口与SQLite数据库交互,提供诸如SQLiteConnection、SQLiteCommand、SQLiteDataReader等类和方法,使得操作SQLite类似于操作其他主流数据库如SQL Server。
SQLite
0
2024-08-17
ELK 实战指南
这份指南深入探讨 ELK 技术栈的搭建与应用,涵盖 Elasticsearch、Logstash 和 Kibana 等组件的配置、优化和实践技巧,助力您构建高效的数据分析平台。
spark
10
2024-04-29
深入解析大数据技术之Presto分布式SQL查询引擎
大数据技术之Presto
Presto是一个开源的分布式SQL查询引擎,用于交互式分析查询,支持的数据量范围从GB到PB级别。Presto的设计初衷是满足像Facebook这样的大型商业数据仓库对交互式分析和处理速度的需求。
Presto适合多种在线数据查询,支持包括Hive、关系数据库(MySQL、Oracle)以及专有数据存储等多种数据源。主要用于响应时间在1秒至数分钟的场景。
Presto架构
Presto的架构是一个分布式系统,包括Coordinator和多个Worker:- Coordinator:负责解析查询语句、执行计划分析,并管理Presto的Worker节点。- Worker:负责执行任务并处理数据。Coordinator还会跟踪每个Worker的活动情况并协调查询的执行。
数据源与Connector
在Presto中,通过Connector访问数据源。Connector是连接Presto和数据源(如Hive、关系数据库)的适配器。Presto内建了多个Connector,包括JMX、System Connector、Hive Connector和TPCH Connector。此外,还有多个第三方Connector可供使用。
Catalog是用于管理数据源metadata的概念。每个Catalog都基于一个特定的Connector。在配置catalog时,必须包含connector.name属性,来指定Catalog使用的Connector。
应用场景与优缺点
Presto适用于交互式分析、数据仓库、报表生成、数据挖掘等应用场景,支持多种数据源集成(如Hive、关系数据库和专有数据存储)。查询语言为SQL,支持select、insert、update、delete等模式。
优点:- 高性能:处理大规模数据时,响应时间短。- 高度扩展性:支持水平扩展,通过增加Worker节点提升数据处理能力。- 灵活性:支持多种数据源与查询模式。
缺点:- 复杂性:架构和实现复杂,需专业运维人员管理。- 限制性:无法用于在线事务处理(OLTP)。
算法与数据结构
0
2024-10-25
深入解析大数据技术之Flume架构、组件与工作流程
大数据技术之Flume知识点详述
一、Flume概述
1.1 Flume概念Flume是Cloudera提供的一款用于高效收集、聚合并传输大规模日志数据的分布式软件。其设计目标是可靠性和可扩展性,能够支持多种数据源和数据目标,具有高度灵活性。
1.2 Flume组成架构Flume的核心组件包括Agent、Source、Channel、Sink以及Event,这些组件协同工作以实现数据的有效收集和传输。
1.2.1 Agent
定义:Agent是一个独立运行的JVM进程,主要负责数据的收集、传输等操作。
组成:由Source、Channel、Sink三部分构成。
1.2.2 Source
功能:Source组件负责接收原始数据,并将其转化为Flume事件(Event)。
类型:Flume支持多种类型的Source,如Avro、Thrift、Exec、JMS等,这些Source可以处理不同来源的数据。
1.2.3 Channel
功能:Channel作为Source和Sink之间的桥梁,用来暂存来自Source的数据。
类型:
MemoryChannel:使用内存作为存储介质,速度快但不可靠,数据易丢失。
FileChannel:将数据持久化到磁盘,可靠性较高但速度较慢。
1.2.4 Sink
功能:Sink负责从Channel中读取数据,并将数据写入最终的目标位置,如HDFS、HBase等。
类型:支持多种Sink,包括HDFS、Logger、Avro、Thrift等。
1.2.5 Event
定义:Event是Flume处理的基本单位,包含Header和Body两部分。
二、Flume拓扑结构
Flume支持多种拓扑结构,包括但不限于:- 单Agent:一个Agent完成数据的收集与传输。- 多级Agent:多个Agent之间进行级联,形成复杂的数据传输链路。- 负载均衡:通过配置多个Sink,实现数据的负载均衡。
三、FlumeAgent内部原理
FlumeAgent的工作流程大致如下:1. 数据采集:通过Source收集外部数据。2. 数据存储:Channel将数据临时存储,保证数据稳定传输。3. 数据传输:Sink将数据写入最终目标。
算法与数据结构
0
2024-10-28
logstash 6.7.0 RPM 包
Logstash 6.7.0 版本以 RPM 包格式发布,适用于基于 Red Hat 和 CentOS 的系统。
kafka
3
2024-05-12
Logstash 6.2.3 资源获取
Logstash 6.2.3 软件包
获取 Logstash 6.2.3 版本软件包,可参考官方文档进行安装和部署。
kafka
6
2024-04-29