Spark 程序适用于对静态的历史数据进行一次性处理,它利用单个 Spark 应用实例完成计算。 Spark Streaming 则用于处理连续不断的实时数据流,它将数据流分割成多个批次,并利用一组 Spark 应用实例进行并行处理。
Spark 程序与 Spark Streaming 的区别
相关推荐
Spark Streaming 与 Structured Streaming 解析
深入探讨 Spark Streaming 和 Structured Streaming,剖析其模块构成与代码逻辑,助你透彻理解实时数据处理的原理与应用。
spark
4
2024-05-14
Spark & Spark Streaming 实战学习
深入掌握 Spark 和 Spark Streaming 技术
课程资料囊括代码示例和环境配置指导。
授课内容基于经典案例,助您构建扎实的理论基础与实战经验。
欢迎共同探讨学习心得,交流技术问题。
spark
6
2024-04-30
Flume与Spark Streaming的集成实现
在这个压缩包中包含了用于实现Flume监控文件夹中内容变化的关键组件:commons-lang3-3.3.2.jar、spark-streaming-flume_2.10-1.6.0.jar以及scala-compiler-2.10.5.jar。接着,Spark Streaming利用这些组件对数据进行实时分析。
spark
1
2024-08-03
Spark Streaming技术介绍
Spark Streaming技术是基于Spark平台的流数据处理解决方案,能够实时处理大规模数据流并提供高效的数据分析和处理能力。
spark
4
2024-07-13
Spark Streaming 与 Kafka 集成 JAR 包
提供 Spark Streaming 与 Kafka 集成所需要的 JAR 包:
spark-streaming-kafka-0-8_2.11-2.4.0.jar
spark
7
2024-05-13
Flume与Spark Streaming集成资源包
Flume与Spark Streaming集成资源包
本资源包包含Flume与Spark Streaming集成所需的必要文件:
Spark Streaming整合Flume所需安装包
Spark Streaming拉取Flume数据的flume配置文件(.conf)
Flume向Spark Streaming推数据的flume配置文件(.conf)
spark
2
2024-05-15
Druid与Spark Streaming整合技术探究
Druid与Spark Streaming整合技术深入解析####一、背景介绍在大数据处理领域,Apache Spark因其高效数据处理能力广受欢迎,而Druid则以实时数据聚合和查询著称。结合Spark Streaming与Druid,可实现对流式数据的实时分析,并利用Druid快速查询与可视化展示数据。 ####二、依赖配置为了整合Spark Streaming与Druid,首先需添加以下关键依赖: 1. Scala库: - org.scala-lang:scala-library:2.11.8:Scala标准库。 2. Jackson库: - com.fasterxml.jackson.core:jackson-databind:2.4.5:JSON数据绑定。 3. Java Util库: - com.metamx:java-util:1.3.2:常用工具类。 4. Tranquility-Spark库: - io.druid:tranquility-spark_2.11:0.8.2:Druid模块,支持与Spark集成。 5. Spark Streaming库: - org.apache.spark:spark-streaming_2.11:2.2.0:流式数据处理支持。 6. Config库: - com.typesafe:config:1.3.3:配置管理。这些依赖确保项目顺利进行。 ####三、Beam工厂示例代码中的“Beam工厂”部分主要说明如何将Beam对象数据转换为BeamRDD,批量写入Druid。重点在于Beam类及其相关方法,以下详细解释: 1. 关键导入: - import com.metamx.common.Granularity - import com.metamx.tranquility.beam.{Beam, ClusteredBeamTuning}
spark
0
2024-08-21
Spark Streaming 2.3.0 中文详解
全面解析 Spark Streaming 2.3.0 API、知识点和案例,助您轻松掌握流处理技术。
spark
2
2024-05-12
基于 Spark Streaming 与 ALS 算法的餐饮推荐系统
本项目利用 Spark Streaming 和 ALS 算法构建了一个实时的餐饮推荐系统。系统通过分析用户的历史消费数据,实时预测用户对不同菜品的喜好程度,并向用户推荐其可能感兴趣的菜品。
系统架构
系统主要分为数据采集、数据预处理、模型训练和推荐服务四个模块。
数据采集模块: 负责实时采集用户的点餐数据,包括用户ID、菜品ID、评分等信息。
数据预处理模块: 对采集到的原始数据进行清洗和转换,生成模型训练所需的格式。
模型训练模块: 利用 Spark Streaming 对用户历史数据进行实时训练,构建基于 ALS 算法的推荐模型。
推荐服务模块: 接收用户的推荐请求,根据模型预测结果返回个性化的菜品推荐列表。
核心技术
Spark Streaming: 用于实时处理用户的点餐数据流。
ALS 算法: 一种协同过滤算法,用于挖掘用户和菜品之间的潜在关系,并进行推荐。
系统优势
实时性: 系统能够实时处理用户数据,并及时更新推荐结果。
个性化: 系统根据用户的历史行为和偏好进行个性化推荐,提高用户体验。
可扩展性: 基于 Spark 分布式计算框架,系统可以轻松扩展以处理更大规模的数据。
spark
2
2024-06-04