fmin_adam
是来自Kingma和Ba的Adam优化算法,它使用自适应学习率的梯度下降,并对每个参数单独应用Momentum。Adam设计用于解决随机梯度下降问题,适合在使用小批量数据估计每次迭代的梯度时,或在随机dropout正则化的情况下使用。有关用法,请参考以下格式:
[x, fval, exitflag, output] = fmin_adam(fun, x0, stepSize, beta1, beta2, epsilon, nEpochSize, options]
有关详细参考,请查看功能帮助。GitHub存储库中包含多个示例: [https://github.com/DylanMuir/fmin_adam]。参考文献:[1] Diederik P. Kingma,Jimmy Ba. “亚当:随机优化方法”