KNN分类的源代码在MATLAB中的实现非常简单易用,适合初学者学习和参考。
MATLAB实现的KNN分类算法源代码
相关推荐
用Python实现KNN分类算法
K最近邻(kNN)分类算法是数据挖掘中最简单的分类技术之一,其核心思想是根据样本在特征空间中与其最近的k个邻居的类别来决定该样本的类别归属。当一个样本的大多数最近邻居属于某一类别时,该样本也归属于该类别,并具有该类别的特性。kNN方法依赖于周围少数邻近样本的类别来做出分类决策,而非划分类域。该方法因其简单且有效而被广泛应用。
数据挖掘
2
2024-07-31
Matlab实现KNN算法
使用Matlab编写并实现KNN(K-Nearest Neighbors)算法。KNN是一种基本的分类和回归方法,通过计算样本间的距离来确定新数据点的分类。Matlab提供了便捷的工具和函数来实现和测试KNN算法,使其在机器学习和数据挖掘中广泛应用。
Matlab
0
2024-09-01
KNN定位算法MATLAB代码实现及应用
本MATLAB代码实现了一种精简的KNN定位算法,适用于室内定位初学者的学习。该代码已整理定位相关函数,并提供了一个使用射线跟踪仿真生成的指纹数据库。运行代码后,可获得定位结果并显示平均误差。在代码中,指纹数据库中的坐标对应于指纹库的行数和列数。为了计算最近邻点的位置,采用了不同的公式,这是因为欧式距离已被重塑为一维。
Matlab
3
2024-05-31
Matlab 中 KNN 代码实现:Mnist 和 Cifar-10 图像分类
这是一个 EE369 项目,用 Matlab 实现了五种分类器:KNN、线性 SVM、核 SVM、Fisher 线性判别和核 Fisher 判别,用于对 CIFAR-10 和 MNIST 图像数据集进行分类。
文件说明:
init.m: 在测试 CIFAR-10 之前必须先运行此文件!它包含 VLFeat 特征提取库的代码。
train.m: 为 CIFAR-10 选择分类器并训练模型。
classify.m: 为 CIFAR-10 选择分类器并进行分类。
localtest.m: CIFAR-10 的主程序,在此运行 CIFAR-10 分类。
localtest2.m: MNIST 的主程序,直接在此文件中选择分类器并运行 MNIST 分类。需要选择 train 和 classify 文件。
localtest3.m: 当 MNIST 运行时内存不足(电脑内存小于 8GB)时,使用此文件运行 MNIST 分类。
注意事项:
SVM 和核 Fisher 判别在内存小于 8GB 的电脑上运行 MNIST 时可能会提示内存不足,此时请使用 localtest3.m 文件运行。
如果相对路径不成功,请根据实际情况修改文件路径。
Matlab
2
2024-05-21
使用Matlab实现的遗传算法源代码
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法可以解决多种优化问题,如:TSP问题、生产调度问题、轨道优化问题等,在现代优化算法中占据了重要的地位,本例使用遗传算法求解最优解。
Matlab
2
2024-07-17
展示KNN算法如何分类鸢尾花
展示一个简易的KNN模型,演示如何对鸢尾花进行分类。
Matlab
3
2024-07-28
神经网络分类的LRP算法Matlab代码实现
LRP算法是一种逐层相关性传播的方法,用于解释神经网络分类器预测的关键输入。该算法通过学习模型的拓扑结构,将输入的重要组成部分与分类结果相关联。LRP工具箱支持Matlab和Python环境,提供了Caffe深度学习框架的扩展功能,用于模型和数据的导入导出。
Matlab
0
2024-08-28
基于类别特性的 KNN 文本分类算法改进
论文提出了一种基于独立类别特性的改进 KNN 文本分类算法,该算法通过利用文本的不同类别特征来提高分类精度。
数据挖掘
4
2024-04-30
MATLAB代码实现KNN、层次聚类、C均值与最邻近算法
在本项目中,KNN、层次聚类、C均值和最邻近算法的基本实现均基于算法原理进行编写。使用自选的数据集,对每种算法的准确率进行了测试与分析。以下是每个算法的简要代码及结果展示。
Matlab
0
2024-11-03