Matlab Scheduling Algorithm Simulation Code-CSC417Physics-Based Animation
Course Information
Course Title: Matlab Scheduling Algorithm Simulation Code - CSC417 / CSC2549: Physics-Based Animation
Instructor: Professor [Name] (Contact via email)
Office Hours: Tuesdays 5:00 PM - 6:00 PM via Zoom (Link will be sent to registered students)
Teaching Assistant (TA): Vismay Modi, Honglin Chen
Course Description:This course aims to introduce students to the fundamental mathematical and algorithmic techniques required for effective numerical simulation of physical phenomena, such as rigid bodies, deformable bodies, and fluids. The focus is on developing algorithms that produce visually compelling representations of physical systems. Topics include the mathematics for describing the motion of physical objects, discretization techniques, and efficient numerical methods for solving discrete equations.
Prerequisites:- C/C++ programming- Linear algebra- Calculus- Numerical methods
Students should be familiar with basic linear algebra, geometry, and vector calculus. Basic programming skills in C++ are assumed. (Strongly recommended: Multivariable calculus.)
Useful Resources: Please refer to the course materials for recommended readings and additional resources.
Zoom Office Hours:- Tuesday: 4:00 PM - 5:00 PM- Wednesday: 2:00 PM - 3:00 PM(Links will be sent via email to registered students)
Discussion Board: Access course discussion board for assignments and discussions.
Summary
CSC417 provides the theoretical and practical foundation for developing physics-based animation algorithms using Matlab. Students will learn to simulate and represent complex physical systems like rigid bodies, deformable bodies, and fluids. The course emphasizes the application of numerical methods to solve physical equations for real-time simulations.
Matlab
0
2024-11-06
Matlab_in_Physics_Application
在物理课程设计中,Matlab的应用越来越广泛,尤其是在大学物理课程中。在荆楚理工学院,学生们通过使用Matlab来模拟物理实验、分析数据、解决实际问题。例如,学生们通过编写Matlab代码来研究力学、电磁学、热力学等领域中的复杂问题,进一步提升了物理知识的理解和实践能力。Matlab不仅提高了计算效率,也帮助学生更直观地理解物理概念。通过这种方式,Matlab成为了物理学科中不可或缺的工具。
Matlab
0
2024-11-06
Multivariate Random Variables and Their Distributions in MATLAB
多维随机变量及其分布可以通过mvnpdf和mvncdf函数计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。下图分别为二维正态分布随机变量的概率密度图和累积分布图。
Matlab
0
2024-11-04
Matlab Development in Computational Applications for Material Mechanics
Matlab开发-材料力学中的计算机应用。配套软件
Matlab
0
2024-11-04
Efficient Random Permutation in MATLAB with Knuth Shuffle
您可以使用MATLAB的randperm函数生成随机排列。不幸的是,randperm函数效率很低,因为它是通过对随机数列表进行排序来实现的。这需要时间O(n * log(n))。使用Knuth shuffle算法,这个操作只需要时间O(n)。这个包实现了Knuth shuffle。用法:只需使用randpermquick(n)而不是randperm(n)。请注意,在使用randpermquick之前,必须先编译文件randpermquick_helper.c。
Matlab
0
2024-11-04
Implementing PRNG Using Lehmer Random Number Generator in MATLAB
使用Lehmer随机数生成器算法生成随机数的函数。语法:[x]=lrng(n,g,seed)。
Matlab
0
2024-11-04
Database_Project_SQL_Assignment
数据库课程设计,对数据库系统的建表和查询进行设计与实现。主要涉及以下几个步骤:
建表操作:创建适当的表结构,包括字段名、数据类型、约束条件等。
数据插入:通过SQL语句将数据插入到表中,保证数据完整性和一致性。
查询操作:使用SELECT语句查询数据,涉及简单查询和复杂查询(如联表查询、聚合函数等)。
该设计主要考察学生对数据库设计与SQL操作的掌握情况,并通过实际操作提升数据库管理能力。
MySQL
0
2024-10-26
Essential Mathematics for Physics, Chemistry, and Engineering
This book serves as a refresher for upper-level undergraduate and graduate students in physics, chemistry, and engineering, solidifying their understanding of fundamental mathematical concepts crucial for scientific coursework. The content emphasizes practical applications of mathematics in these fields, starting with twelve progressively challenging examples that cultivate students' mathematical reasoning and problem-solving abilities in scientific contexts. Comprehensive illustrations and online resources enhance understanding, while the updated edition incorporates new problems, illustrations, and expanded chapters on matrix algebra and differential equations.
算法与数据结构
4
2024-05-30
Machine Learning in Matlab Background Separation Techniques for Particle Physics Research
在粒子物理学研究中,背景分离技术是数据分析的重要部分,尤其是在信号与背景的分类中,信号代表我们感兴趣的粒子事件。我使用了多种机器学习技术,尤其是背景分离,来进行数据分析,以获得在其他数据集上的分析经验。本研究包括了在Coursera的Andrew Ng机器学习课程中的一些项目,这些项目使用了Matlab进行实现。
Matlab作为一种高级科学计算语言,能够处理各种机器学习任务,特别是信号与背景的分类。课程内容包括线性回归、逻辑回归、神经网络、支持向量机、K均值聚类等常见模型的应用。这些模型的实现涉及到诸如梯度下降、成本函数等技术细节。
例如:
例1:在练习1中,我们使用了线性回归模型,通过输入值预测实值输出,应用于房价预测,重点讨论了成本函数的概念,并实现了梯度下降算法。
例2:在另一个练习中,我们构建了逻辑回归模型,以预测学生是否能被大学录取。
这些方法的实现需要通过Octave或MATLAB来进行,帮助我们深入理解并实践机器学习算法的核心原理。
Matlab
0
2024-11-05