一个简单的两步函数,其中isoutlier命令识别异常值,find命令定位异常值所在的单元格。
findout Detecting Outliers in MATLAB Using Simple Functions
相关推荐
Detecting Single Information Bit in Noise Ocean Using Deep Learning Matlab Implementation
概述
本示例展示了如何使用卷积神经网络(CNN)快速检测在噪声海洋中的单个信息位。生成一个指定大小的随机矩阵,并在矩阵的一个位置将其中一半像素设置为true,另一半设置为false。然后,使用CNN进行矩阵分类,将矩阵分为两类('class 1' 和 'class 2')。
CNN训练与检测
通过深度学习模型训练,我们能够快速识别并定位矩阵中的单个信息位位置。与传统机器学习算法相比,CNN在这种任务中的收敛速度要快得多,且具有强大的处理能力。
应用场景
这种方法不仅适用于矩阵,也可以推广到其他数据形式,如基因组数据中的单核苷酸变异(SNPs)或财务数据中的欺诈交易。该方法为高效分类和信息位检测提供了有效工具。
总结
本示例证明了深度学习在复杂噪声环境下的优越性,并为各种实际应用提供了新的思路。
Matlab
0
2024-11-05
Simple Drum Separation Using NMF MATLAB Development for Chordal Music
----此脚本说明了如何使用NMF提取和弦音乐中的鼓部分。它利用了Mathworks文件交换中可用的NMF和Signal类。该技术的主要流程是:
计算不同频段的起始点。
将整个信号建模为NMF,对应于鼓的分量的H被初始化。
对信号进行过滤。
对于小文件(大约30秒),此代码应该可以正常工作。将此脚本用于研究目的时,请提供相应的参考:@article{LiutkusGPSS,author = {Liutkus, A. and Badeau, R. and Richard, G.},journal = {IEEE Transactions on Signal Processing},title = {Gaussian Processes for Underdetermined Source Separation},year = {2011},month = {July},volume = {59},number = {7},pages = {3155-3167},doi = {10.1109/TSP.2011.2117402}}
Matlab
0
2024-11-05
Imprecise Alternating Optimization for Phase Retrieval with Outliers Robust Phase Retrieval Demonstration Using AltGD in MATLAB
C. Qian, X. Fu, N.D. Sidiropoulos, L. Huang, and J. Xie explore phase retrieval in the presence of outliers in their paper published in the IEEE Transactions on Signal Processing. Typically, phase retrieval algorithms perform well under Gaussian noise; however, their performance severely degrades with significant data corruption. This study investigates heavy-tailed phase retrieval techniques, proposing p-norm estimators (0 < p>imprecise alternating optimization are introduced to tackle the resulting optimization problem. Notably, the core minimization step can be interpreted as iterative reweighted least squares and gradient descent. The authors discuss the convergence properties of the algorithms and derive the Cramer-Rao Bound (CRB). Simulations demonstrate that the proposed algorithms are effective and close to optimal.
Matlab
0
2024-11-03
Useful MATLAB Functions for Speaker Recognition Using Adapted Gaussian Mixture Model
This submission includes useful MATLAB functions for speaker recognition using adapted GMM. The implementation details for steps (i)-(iii) can be found in [1]. The fourth function, gmm2sv.m, connects the means (i.e., centers) of the GMM. The cascade means of the adapted GMM are referred to as the GMM supervector (GSV), which is used in the GMM-SVM based speaker recognition system. More information about the GMM-SVM based speaker recognition system can be found in [2]. These codes require the Netlab toolbox. You can access it at: Netlab Toolbox. References: [1] DA Reynolds, TF Quatieri, and RB Dunn, “Speaker Verification Using Adapted Gaussian Mixture Models,” Digital Signal Processing, Vol. 10, pp. 19–41, 2000. [2] Campbell, W. M.; Sturim, D. E.; Reynolds, D. A.; “Support Vector Machines Using GMM Supervectors for Speaker Verification,” Signal Processing Letters.
Matlab
0
2024-11-05
MATLAB_Functions_Summary
总结了MATLAB编程中常用的一些函数,便于快速查找和使用。
Matlab
0
2024-11-03
MATLAB_Functions_Tips_Overview
此文档基本上简单明了的概括了MATLAB中所有常用函数的用法和技巧,方便快速学习!
Matlab
0
2024-11-03
Essential MATLAB Functions Reference Guide
MATLAB常用函数参考,提供常用的MATLAB函数详细说明,PDF格式,适合初学者与进阶用户参考,助您更高效地完成各类数学计算与编程任务。文档中涵盖了多种常用函数的语法、功能介绍以及示例,帮助用户快速上手并深入理解每个函数的应用场景。
Matlab
0
2024-11-05
MATLAB_Functions_Collection_Overview
MATLAB常用的基本函数详细介绍:
数学函数:
sum:计算数组元素之和
mean:计算数组元素的平均值
std:计算数组的标准差
三角函数:
sin:计算角度的正弦值
cos:计算角度的余弦值
tan:计算角度的正切值
永久函数:
pi:返回圆周率π的值
inf:表示正无穷
NaN:表示非数值(Not-a-Number)
绘图函数:
plot:绘制二维线性图
bar:绘制柱状图
hist:绘制直方图
Matlab
0
2024-11-06
Foolproof Tetris A Simple MATLAB Code with Extensive Comments
本代码是一个俄罗斯方块游戏,包含声音、高分和重力等功能。它作为学习工具,具有广泛的注释和简单的代码布局。代码探索了循环和if语句、补丁、保存/加载、GUI技术、回调和声音生成等内容。该代码易于编辑,可满足个人需求或增强其模块化。我希望至少有些人能从中学到新东西。
Matlab
0
2024-11-03