OFDM传输、信道估计、PN序列、RS码实现、比较
PN_Sequence_Based_Channel_Estimation_and_Reed_Solomon_Code_Implementation_in_OFDM_Matlab_Development
相关推荐
SUI MIMO Channel MATLAB Implementation
SUI MIMO channel 的 MATLAB 实现,附有说明文档。
Matlab
0
2024-10-31
Reed Solomon代码的数学推导和MATLAB实现
基于Sklar的《数字通信-基础和应用》第二版第8章,展示了如何使用MATLAB重新生成文章中的图表,这些图表使用了Reed Solomon代码,是学习该代码的理想工具。
Matlab
0
2024-09-29
OFDM_Synchronization_Algorithm_Matlab_Implementation
利用MATLAB代码对OFDM的同步算法进行仿真,采用短训练序列的互相关运算进行帧同步,并利用长训练序列的互相关实现符号同步。
Matlab
0
2024-11-02
MATLAB Image Color Balance Code Implementation
我自己写的图像色彩平衡代码,其中h(i)为r、g、b的平均值,lh为h(i)的平均值,h(i)/lh-1为平衡基,s(i)为加权系数。
Matlab
0
2024-11-03
PSO Optimization Algorithm MATLAB Implementation with Paper and Code
PSO优化算法的MATLAB语言实现,包含英文论文和代码。
Matlab
0
2024-10-31
Image Watermarking Algorithm Based on LSB Implementation
基于LSB的图像水印算法是通过MATLAB实现的,包含有实现的源代码和论文。该算法通过最低有效位(LSB)技术,嵌入水印信息于图像中,确保视觉质量不受影响,同时实现信息的隐藏与传输。
Matlab
0
2024-11-03
Design and Implementation of Workflow Systems Based on Relational Databases
基于关系数据库的工作流系统设计与实现
概述
档主要讨论了如何基于关系数据库设计并实现一个高效的工作流系统。工作流系统是指在组织内部,为处理特定业务流程而设计的一系列步骤,通过自动化工具管理和执行。基于关系数据库的工作流系统能够更好地支持复杂的数据查询和事务处理,从而提高业务流程的效率和可靠性。
关键知识点
关系数据库在工作流系统中的应用
数据存储: 工作流系统的数据模型设计是关键,通常采用关系型数据库来存储工作流定义、实例状态、任务状态等信息。
事务处理: 通过关系数据库的事务特性确保工作流中各环节操作的原子性、一致性、隔离性和持久性(ACID)。
查询优化: 利用SQL查询语言的强大功能,快速检索工作流实例的状态信息,支持业务决策。
工作流引擎的设计
状态机模型: 工作流引擎的核心是状态机模型,定义了任务或步骤之间的转换规则。
活动定义: 活动构成工作流的基本单元,包括任务、事件、网关等。
事件驱动: 工作流引擎通常采用事件驱动方式触发执行,例如任务完成或时间到达等。
工作流设计与实现
图形化设计工具: 提供直观的界面帮助用户设计工作流,支持拖拽式操作。
版本控制: 对工作流定义进行版本管理,便于回溯和维护。
动态调整: 运行时可根据实际情况动态调整工作流逻辑。
性能优化
索引策略: 合理设计表结构和索引以提高查询效率。
缓存机制: 使用缓存减少数据库访问频率,提高响应速度。
分布式部署: 在高并发场景下,采用分布式部署分散负载,提高系统整体吞吐量。
安全性考虑
权限管理: 实现细粒度权限控制,确保用户只能访问被授权数据。
数据加密: 敏感数据传输和存储过程应加密处理,防止泄露。
审计日志: 记录重要操作,用于问题追踪和责任认定。
扩展性和灵活性
插件化设计: 通过插件支持不同集成需求,如消息服务、文件管理等。
自定义脚本: 允许用户编写脚本扩展工作流功能,增加系统灵活性。
MySQL
0
2024-10-25
Gaussian White Noise MATLAB Code-PE-GAMP with Built-in Parameter Estimation
高斯白噪声 MATLAB 代码示例:
% 生成高斯白噪声
mu = 0; % 均值
sigma = 1; % 标准差
N = 1000; % 样本数
noise = mu + sigma * randn(N, 1);
% 绘制噪声信号
figure;
plot(noise);
title('Gaussian White Noise Signal');
xlabel('Sample Index');
ylabel('Amplitude');
此代码用于生成和可视化高斯白噪声信号,并可以在后续的图像处理算法中应用。
Matlab
0
2024-11-03
Image Mean Squared Error MATLAB Code for Deep Sequence Regression with Diverse Labels
图像的均方误差的MATLAB代码,涉及标签多样性的深序回归,这是实施的官方代码库,接受ICPR2020。代码作者:Axel Berg。依赖关系包括深度学习工具箱的MATLAB 2020a和CUDA 10.1。数据集准备:在脚本中设置数据集的正确路径后,下载对齐并裁剪的UTKFace图像,运行age/data/createCroppedUtkDataset.m,以创建用于读取图像的数据存储对象。训练/测试拆分与“Coral-CNN”中使用的拆分相同。对于Biwi数据集,我们使用FSA-Net论文中所述的协议2(70-30的训练/测试拆分)。您可以使用原始代码准备数据集并将拆分存储为.mat文件。历史图像数据集需下载并添加,将date/dateParameters.m变量设置为指向它。培训与评估:对每个数据集,运行迭代脚本以训练ResNet50主干进行10次迭代,并将平均误差结果保存在文件中。所有方法的超参数相同,并在单个函数中定义。支持以下损失函数:L2。
Matlab
0
2024-10-31