JPEG压缩的Matlab代码在DCT域中使用奇异值分解的多焦点图像融合。多焦点图像融合是一种将来自不同焦距的场景中的多个图像融合为整个区域都聚焦的图像的过程。DCT域中的图像融合方法因其时间和能量消耗低、复杂度低而非常有效,尤其在视觉传感器网络(VSN)中以JPEG格式压缩定影图像时。提出了一种低复杂度的DCT域多焦点图像融合技术,提高了输出图像质量。该方法在嘈杂条件下稳定,使用8×8输入块的奇异值分解(SVD)的奇异值计算5个最大奇异值的几何平均值,作为聚焦块检测的标准。
Multi-Focus Image Fusion with SVD in DCT Domain
相关推荐
Frequency Domain Image Enhancement in MATLAB
频率域图像增强
傅里叶变换表示的函数特征可以完全通过傅里叶反变换进行重建而不丢失任何信息。吉布斯现象(又叫吉布斯效应):将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰值越靠近原信号的不连续点。当选取的项数很大时,该峰值趋于一个常数,大约等于总跳变值的9%。这种现象称为吉布斯现象。
Matlab
0
2024-11-04
Digital Image Processing Spatial Domain Filtering and Smoothing
本实验通过MATLAB函数对图像加入模拟噪声,并利用MATLAB自带函数进行图像滤波。实验中实现了Sobel算子进行图像边缘提取,并通过自编程实现Laplacian锐化增强。此外,还利用模糊处理改变图像的灰度值,达到灰度增强的效果。
Matlab
0
2024-10-31
MATLAB_Image_Fusion_Algorithms_Implementation.zip
图像融合算法的MATLAB实现,包括灰度极大值融合、加权融合、相关系数融合、TOE融合、HIS融合、PCA融合等等。
Matlab
0
2024-11-04
Image Fusion Using Morphological Analysis and Sparse Representation in Matlab
本视频介绍了基于Matlab的形态学分析和稀疏表征的CSMCA图像融合方法,代码均可运行,适合初学者。1. 主函数:main.m;调用函数:其他m文件;运行结果无需额外操作。2. 运行版本:Matlab 2019b。如有错误,根据提示调整,若有疑问可私信博主。3. 运行步骤:- 步骤一:将所有文件放入Matlab当前文件夹;- 步骤二:双击打开main.m;- 步骤三:点击运行,等待结果。4. 服务咨询:可私信博主或扫描视频QQ名片获取更多支持,包括完整代码、期刊复现、程序定制及科研合作等。
Matlab
0
2024-11-04
EKF-Based Radar and Infrared Data Fusion for Multi-Target Tracking in MATLAB
本程序基于EKF(扩展卡尔曼滤波器)实现了雷达与红外数据的融合,采用状态向量融合和量测融合两种方法对多目标进行跟踪。通过结合雷达和红外传感器的观测数据,能够有效提高目标跟踪的准确性和可靠性。
状态向量融合方法通过将雷达与红外数据的状态信息结合,进行统一估计,优化目标位置与速度的估算。
量测融合方法则通过将雷达和红外传感器的测量数据进行融合,利用滤波器更新目标的状态,从而提高目标检测与跟踪的精度。
该MATLAB程序能够处理动态目标的跟踪任务,特别适用于复杂环境中的多目标检测与跟踪。
程序涉及的数据处理流程包括:数据预处理、滤波器初始化、状态更新、卡尔曼增益计算等关键步骤。
该程序不仅适用于雷达和红外系统的融合应用,也为基于传感器融合的目标跟踪算法提供了一个有效的实现框架。
Matlab
0
2024-11-05
Reduce Image Mean MATLAB Code for Multi-View Lipreading
图像均值 MATLAB 代码概述 这是在 OuluVS2 数据集 上测试的 端到端多视图唇读 的 Python 实现。如果在研究中使用该包,请引用以下论文: [1] 端到端多视图唇读,S. Petridis、Y. Wang、Z. Li、M. Pantic,2017年9月,英国机器视觉会议。 依赖项:运行代码需要以下依赖项: miniconda2、matplotlib、pydotplus、scikit-learn、Pillow。建议使用 miniconda 管理 Python 环境,CUDA 安装不是必需的。数据集 OuluVS2 收集于芬兰奥卢大学,促进视觉语音识别研究,使用前需签署许可协议。成功下载数据集后,您可以使用提供的脚本进行预处理。
Matlab
0
2024-11-04
Quantum Genetic Algorithm for Optimizing Multi-Threshold Image Segmentation in MATLAB
该项目涉及图像分割,使用量子遗传算法优化最大熵法进行图像多阈值处理。内容涵盖了智能优化算法、神经网络预测、信号处理等多个领域的MATLAB仿真代码。
Matlab
0
2024-11-02
EE225B-PSet7Image DCT Transformation MATLAB Code
图像 DCT 变换 MATLAB 代码 PSet7 图像压缩 介绍:此问题集中在与图像压缩有关的算法上。 代码结构和运行命令 此问题集中有三个子文件夹。 第1部分:客观保真度标准 在 ./problem1/ 中,有三个 MATLAB 文件: RMSE.m:计算两个图像的均方根误差。 SQAR_SNR:计算两个图像的信噪比平方根。 part1.m:主程序,使用统一量化和 IGS 量化来压缩同一张图像并量化上述两个指标。在 MATLAB 命令窗口中,运行 part1.m 的命令,结果将显示在命令窗口中,并输出两个图像。 第2部分:图像熵 在 ./problem2/ 中,有两个 MATLAB 文件: EntropySelf.m:计算一张图片的熵值。 part2.m:主程序,计算两个图像的熵。按照 part2.m 的命令运行,结果将显示在命令窗口中。 第3部分:转换编码 在 ./problem3/ 中,有四个 MATLAB 文件: RMSE.m:MATLAB 函数...
Matlab
0
2024-11-04
Private Domain Data-Driven Operations Overview
私域数据化运营是指企业通过收集、分析和利用自身拥有的用户数据,以更精细化、个性化的方式进行运营和营销的过程。这有助于企业更好地了解他们的用户、满足用户需求,提高用户忠诚度,从而实现更好的业务增长。以下是进行私域数据化运营的一般步骤: 1. 数据收集与整合:收集来自不同渠道的用户数据,包括网站、移动应用、社交媒体、线下活动等,并整合到中心化数据库中。 2. 数据清洗与整理:确保数据的准确性和一致性,处理错误、重复或不完整的信息。 3. 用户画像构建:基于收集的数据创建用户画像,描述不同用户群体的兴趣、偏好、购买习惯等。 4. 数据分析与洞察:利用数据分析工具,深入挖掘数据,找出用户行为的模式和趋势,发现用户喜好、流失原因、高价值用户等重要信息。 5. 个性化营销:根据数据分析的结果,制定个性化的营销策略。
统计分析
0
2024-11-01