支持向量机(Support Vector Machine, SVM)基于计算学习理论中的结构风险最小化(SRM)原则。它的核心在于找到一种归纳方法,使风险达到最小值,从而实现最佳推广能力。不同于传统的机器学习理论所遵循的经验风险最小化(ERM)原则,SVM 能有效应对线性不可分的情况,这也是它的重要优点之一。